Programme du DUT
Génie Chimique - Génie des Procédés

Option Procédés
Option Bio-Procédés

Présentation de la formation
SOMMAIRE

LA FORMATION

1- LA SPECIALITE GENIE CHIMIQUE – GENIE DES PROCEDES
2- LES FONCTIONS DE TECHNICIENS SUPERIEURS
3- LE DIPLOME
4- PRESENTATION DES OPTIONS ET DE LEURS DEBOUCHES
5- ORGANISATION DE LA FORMATION
 5-1 : Conditions d'admission
 5-2 : Formation en quatre semestres à temps plein
 5-3 : Formation en deux semestres à temps plein
 5-4 : Formation par apprentissage et par formation continue
 5-5 : Contrôle des connaissances
6- DESCRIPTIF DE LA FORMATION
 A - PROJET PERSONNEL ET PROFESSIONNEL
 B - GENIE CHIMIQUE – GENIE DES PROCEDES
 C - MATHEMATIQUES
 D - PHYSIQUE
 E - CHIMIE - BIOCHIMIE
 F - HYGIENE SECURITE ENVIRONNEMENT QUALITE (HSEQ)
 G - FORMATION GENERALE
 H - ANGLAIS
 I - PROJETS TUTEURES
 J - STAGE
 K - APPRENDRE AUTREMENT

TABLEAU DES MATIERES PAR SEMESTRE ET PAR OPTION :
S1, S2
 Option Procédés S3, S4
 Option Bio-Procédés S3, S4
 Liste des modules complémentaires pour l'option Procédés
 Liste des modules complémentaires pour l'option Bio-Procédés

DESCRIPTIF DES FICHES - MODULES
S1, S2
 Option Procédés S3, S4
 Option Bio-Procédés S3, S4
 Modules complémentaires : ouverture scientifique
 Modules complémentaires : renforcement des compétences professionnelles
 Modules complémentaires : approfondissement technologique

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
LA FORMATION

1- LA SPECIALITE GENIE CHIMIQUE – GENIE DES PROCEDES

Le « Génie Chimique » concerne l’étude des procédés dans le domaine de la production des industries chimiques, pétrochimiques et pharmaceutiques, tandis que le « Génie des Procédés » est l’appellation plus large recouvrant l’étude des procédés de transformation de la matière et de l’énergie dans l’ensemble des industries de la chimie mais aussi de l’agroalimentaire, de l’environnement, de la cosmétique et de toutes les industries connexes mettant en œuvre des procédés.

D’une manière générale, le génie des procédés détermine les conditions de faisabilité d’un procédé et propose les solutions techniques adaptées rendant possible son extrapolation à l’échelle industrielle. En fait, il s’agit dans un premier temps de concevoir et de dimensionner les différents appareillages et unités de production et ensuite de conduire et gérer ces appareillages et unités en tenant compte des impératifs de la production (quantité, spécificités des produits, coûts) tout en respectant les exigences de la qualité, de la sécurité et de l’environnement.

La transformation de la matière et de l’énergie peut être abordée par voie chimique ou par voie biochimique ; ce dernier aspect est énergétiquement le plus intéressant et nécessite des connaissances spécifiques en biologie ce qui conduit à la mise en place des deux options :
- option Procédés
- option Bio-Procédés

2- LES FONCTIONS DE TECHNICIENS SUPERIEURS

Les départements de la spécialité "Génie Chimique - Génie des Procédés" des Instituts Universitaires de Technologie dispensent, en formation initiale et continue, un enseignement professionnalisant à la fois théorique, pratique et technologique ayant pour objectif de former des techniciens supérieurs dans les domaines du génie des procédés.

La formation dispensée doit donner au futur diplômé toutes les compétences nécessaires pour les différentes activités possibles :
- Le technicien supérieur en Génie Chimique - Génie des Procédés participe en collaboration avec l’ingénieur, à la conception, à la mise en œuvre et à l’optimisation des procédés industriels de transformation de la matière en produit fini.
- Il met au point le mode opératoire de fabrication afin d’assurer une production industrielle stable.
- Il définit les caractéristiques des différents procédés et des installations, conçoit des appareillages et les dimensionne.
- Il réalise les opérations de réaction, de transformation et de purification de la matière ; il analyse les résultats.
- En unité pilote, il effectue les essais et teste les équipements.
- En bureau d’études, il dimensionne les appareillages et réalise les schémas d’installation.
- En production il est responsable de la conduite d’unités et assure la maintenance des installations.
- Quel que soit le poste occupé par le technicien supérieur, qualité, sécurité et protection de l’environnement sont au centre de ses préoccupations.

Sur un plan général, le diplômé des départements "Génie Chimique - Génie des Procédés" doit être capable :
- d’être le collaborateur direct de l’ingénieur
- de traduire concrètement les concepts du Génie des Procédés
- d’utiliser les bases de données concernant le Génie des Procédés
- d’assurer la conduite et la maintenance d’une unité
- de veiller aux conditions d’environnement, de sécurité et de la qualité
- de réaliser un plan d’appareillage et proposer un schéma d’installation
- d’utiliser des notices rédigées en anglais
- de rédiger et présenter des rapports
- de savoir travailler en équipe
- de faire preuve d’initiative

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

3
Les activités décrites et les responsabilités qu’elles impliquent conduisent le diplômé à occuper les fonctions suivantes dans les emplois de secteurs industriels diversifiés :
- Agent de maîtrise, technicien de production, chef de poste en fabrication.
- Technicien supérieur en recherche-développement.
- Technicien supérieur en bureau d’études et ingénierie.
- Technicien supérieur dans les services de maintenance et de support technique.
- Agent technico-commercial.

Dans les grandes entreprises, le technicien supérieur travaille aux cotés d’ingénieurs en ateliers de production ou en unités pilotes, ou en bureau d’études, ou en recherche-développement ; dans les PMI, PME, il peut se retrouver seul à gérer toutes les activités correspondantes au génie des procédés.

3- LE DIPLOME

Le Diplôme Universitaire de Technologie de “Génie Chimique - Génie des Procédés” est un diplôme professionnel national, sanctionnant une formation pluridisciplinaire et transversale qui s’inscrit dans le schéma Licence-Master-Doctorat et dans l’offre de formation de l’Université. Le DUT, organisé en unités capitalisables, permet la validation d’études, la validation des acquis de l’expérience (VAE) et la mobilité étudiante de l’Union Européenne.

Les contenus de la formation sont définis par la Commission Pédagogique Nationale et les objectifs peuvent se résumer ainsi :
- adapter le diplôme à une grande variété d’emplois, allant de la conception à l’exploitation, en passant par la réalisation et la conduite.
- faciliter sa mobilité et son ouverture d’esprit pour l’évolution ultérieure de sa carrière.
- lui donner la possibilité, dans le cadre de son parcours personnel, de poursuivre ses études. Toutefois, l’insertion professionnelle immédiate reste l’objectif principal de ce diplôme.

Pour atteindre ces objectifs, le DUT de “Génie Chimique - Génie des Procédés” comporte :
- un enseignement principal théorique et pratique de génie des procédés, qui constitue l’essentiel de la formation : mécanique des fluides, thermodynamique, échanges thermiques, opérations unitaires (distillation, extraction, ...), réacteurs chimiques, qualité, sécurité, environnement, automatisme, régulation, conduite des procédés. Cet enseignement intègre à la fois la représentation graphique (dessin industriel, schémas) et les aspects technologiques des appareillages.
- un enseignement général de mathématiques appliquées, de physique et de chimie destiné à donner à l’étudiant les bases nécessaires à la compréhension des lois qui lui sont enseignées en Génie Chimique - Génie des Procédés.
- un enseignement de formation générale et d’anglais orienté vers la communication et l’expression.
- un enseignement destiné à permettre à l’étudiant de construire son parcours personnel professionnalité.
- des projets tutorés et un stage en entreprise complètent la formation.

Le DUT "Génie Chimique - Génie des Procédés" peut être obtenu par différentes voies :
1. Formation en 4 semestres à temps plein
2. Formation en 2 semestres à temps pleine (année spéciale)
3. Formation par alternance et apprentissage
4. Validation des Acquis de l’Expericence (VAE)

Les différentes voies conduisant au DUT de "Génie Chimique - Génie des Procédés" s’adressent à des publics différents et se traduisent par des organisations pédagogiques et des horaires différents. Cependant, quels que soient le parcours réalisé et l’option choisie, la formation se réfère à un même programme et est sanctionnée par un diplôme unique, le DUT de "Génie Chimique - Génie des Procédés".

4- PRESENTATION DES OPTIONS ET DE LEURS DEBOUCHES

Aux semestres S3 et S4, les deux options sont proposées et le volume horaire spécifique de chaque option représente 35% du volume horaire des enseignements.

a) option PROCEDES

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

4
Les enseignements spécifiques à cette option concernent principalement le génie des procédés (étude théorique et technologique des réacteurs chimiques, opérations de séparation : distillation et colonnes industrielles) et la chimie (minérale, organique et industrielle).

Pour cette option, l’insertion professionnelle des diplômés se fait principalement dans différents secteurs d’activités : chimie fine, chimie lourde, industries pharmaceutiques, pétrole et pétrochimie, environnement (eaux, air, déchets), énergie, industries cosmétiques, caoutchouc, verre et céramique, industries textiles et papetières, métallurgie, automobile, microélectronique, construction aéronautique, ...

b) option BIO-PROCEDES
Les bio-procédés consistent à valoriser des produits générés par la transformation des matières premières d’origine animale et végétale ; ceci implique des formations spécifiques en génie biochimique et en biochimie et microbiologie. Par suite, les compétences plus spécifiques attendues pour un futur diplômé sont de :
- réaliser des opérations de réactions (bio-réacteurs, fermenteurs, ...), de transformation et de purification de la matière (stérilisation, séparation, filtration, séchage...);
- traduire concrètement les concepts des bio-procédés
- d’appliquer les règles d’hygiène et de sécurité spécifiques aux bio-procédés.

Pour cette option, l’insertion professionnelle des diplômés se fait principalement dans différents secteurs d’activités : agroalimentaire, bio-procédés, industries pharmaceutiques et cosmétique, environnement (eaux, air, déchets).

5- ORGANISATION DE LA FORMATION

5-1 : Conditions d’admission :
- Formation en 4 semestres à temps plein
Peuvent être admis les titulaires d’un baccalauréat scientifique général, technologique ou professionnel, ou d’un titre admis en équivalence ou en dispense après examen du dossier de l’étudiant.
- Formation en 2 semestres à temps plein (année spéciale)
Peuvent être admis, après examen de leurs dossiers, les étudiants qui possèdent un niveau scientifique correspondant à deux années d’études après le baccalauréat (2e année de licence, classes préparatoires aux grandes écoles, ...) et qui désirent compléter leurs études par une formation technologique courte.
- Formation par alternance et apprentissage
Une telle formation peut être mise en place en partenariat avec les industries locales et sous l’égide d’un CFA.
- Validation des Acquis de l’Expérience (VAE)
Dans le cadre de la Validation des Acquis de l’Expérience (VAE) régie par la loi de Modernisation Sociale du 17 janvier 2002, les candidats engagés dans la vie active ou à la recherche d’un emploi et dont le niveau aura été jugé suffisant par le jury après examen du dossier, entretien et tests éventuels pourront obtenir tout ou partie du Diplôme Universitaire de Technologie.

5-2 : Formation en 4 semestres à temps plein :

a) Organisation générale
Les 60 semaines d’enseignement et la durée de la formation encadrée (1800h) sont réparties en :
- 33 semaines avec un volume de 984 h (semestres S1 et S2)
- 27 semaines avec un volume de 816 h (semestres S3 et S4)
Le programme pédagogique national est découpé en unités d’enseignements avec différents modules et réparties sur 4 semestres. Chaque semestre validé permet d’obtenir dans l’European Credits Transfer System (ECTS) 30 crédits.

La formation dispensée au cours des 4 semestres est répartie en enseignement théorique et technologique et en enseignement pratique ; cette formation comprend également des projets tutorés et un stage en entreprise de 10 semaines minimum au semestre 4.
L'intégration du projet personnel et professionnel de l'étudiant tient compte et respecte les deux objectifs suivants :

- préparer les étudiants à une insertion professionnelle immédiate après le DUT,
- aménager le parcours en IUT de manière à préparer au mieux les poursuites d'étude.

Le parcours de formation conduisant au DUT est constitué d'une majeure, qui garantit le cœur de compétences du DUT, et des modules complémentaires. Ces modules complémentaires sont destinés à compléter le parcours de l'étudiant qu'il souhaite une insertion professionnelle ou qu'il souhaite une poursuite d'études vers d'autres formations de l'enseignement supérieur.

Dans le cas d'une poursuite d'études, les modules complémentaires visent soit la poursuite d'études vers un niveau 2 de qualification, soit une poursuite d'études vers un niveau 1 de qualification. Dans l'un ou l'autre cas les capacités complémentaires attendues sont de nature fondamentale, transversale et disciplinaire.

Les modules complémentaires, quel que soit le parcours suivi par l'étudiant, font partie intégrante du diplôme universitaire de technologie.

Ceux destinés à favoriser la poursuite d'études sont offerts à l'étudiant, qui en a la capacité et le souhait, dans le cadre de l'adaptation de son parcours en fonction de son projet personnel et professionnel. Ils se substituent dans le programme pédagogique national aux modules complémentaires destinés à l'insertion immédiate qui y sont décrits. Ils présentent les mêmes caractéristiques en terme de volume horaire et en terme de coefficient entrant dans le contrôle des connaissances que les modules auxquels ils se substituent.

En conséquence, la formation DUT est construite en deux parties :

- la majeure, (« cœur de compétences »), représente 85% du volume horaire de la formation et garantit le noyau dur des compétences attendues dans le domaine professionnel pour la spécialité génie chimique- génie des procédés,
- les modules complémentaires, représente 15% du volume horaire de la formation.

b) Répartition des enseignements

La répartition des enseignements entre « le cœur de compétences » et les modules complémentaires est réalisée de la manière suivante :

- Cœur de compétences

Le cœur de compétences inclus la totalité des enseignements des semestres S1 et S2, et une partie des enseignements des semestres S3 et S4.

- Semestres S1 et S2 :

Les enseignements sont communs à tous les étudiants, quel que soit le parcours envisagé. Ils assurent une solide formation de base, permettant éventuellement la mobilité des étudiants entre les divers départements de "Génie Chimique - Génie des Procédés". Une semaine de sensibilisation (et de visites) a lieu en S1. En cours de semestre S1 ou S2, les étudiants effectuent un ou plusieurs projets tutorés (volume annuel de 150 heures environ). Les contenus sont définis par les équipes pédagogiques des départements et doivent concourir à l'assimilation des connaissances prévues par le programme pédagogique et à l'acquisition de méthodes de travail. Ils sont plus particulièrement consacrés à la mise en pratique des concepts, ils permettent l'ouverture intellectuelle de l'étudiant et développent le sens de l'initiative et l'autonomie dans le travail.

Au cours des semestres S1 et S2, l'étudiant doit pouvoir définir, en fonction de son projet personnel et professionnel et avec l'aide de l'équipe pédagogique, son parcours universitaire et choisir ainsi les modules complémentaires correspondant à la réalisation de son projet.

- Semestres S3 et S4 :

Les enseignements comportent un tronc commun aux deux options ainsi que des enseignements particuliers à chaque option.

Pour chaque option, le cœur de compétences regroupe les enseignements de base liés aux secteurs industriels visés et cités ci-dessus.

Le stage industriel obligatoire au cours du semestre S4 est de 10 semaines au minimum. Il doit être, pour le futur diplômé, l'occasion de rassembler et d'appliquer ses connaissances à une étude ou à la résolution d'un problème réel et d'être sensibilisé à la réalité du monde professionnel. L'encadrement du stage est assuré

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publiée par arrêté du 23 juillet 2009

6
par les entreprises d’accueil. Chaque stagiaire sera parrainé par un enseignant et par un professionnel. À l’issue de son stage, l’étudiant fournit obligatoirement un rapport dont il expose le contenu devant un jury constitué d’enseignants et si possible de représentants du milieu industriel.

Au cours des semestres S3 et S4, les étudiants conduisent en équipe, un ou plusieurs "projets tutorés", à caractère académique ou industriel. Ces projets, d’une durée totale de 150 heures, sont sous la responsabilité d’un enseignant tuteur. L’ensemble du travail, effectué dans ce cadre, est réalisé en collaboration étroite avec les enseignants de l’équipe pédagogique du département et/ou des collaborateurs du monde industriel. Il peut nécessiter une recherche bibliographique, des calculs prévisionnels d’appareillages, des essais, la recherche du matériel et des matériaux dans des catalogues commerciaux, la réalisation de schémas de certains sous-ensembles, ainsi qu’une évaluation économique sommaire. Ce ou ces "projets tutorés" font l’objet d’un rapport écrit et d’une soutenance orale.

- Modules complémentaires

Au cours des semestres S3 et S4, l’étudiant doit suivre 8 modules complémentaires de 30 heures et un de 40 heures en fonction du parcours choisi. Parmi les 9 modules obligatoires, l’étudiant aura la possibilité de suivre un module libre dans son département ou un autre département ou établissement. Ces modules complémentaires ont été définis en trois catégories avec les objectifs correspondants :
 - ouverture scientifique
 - renforcement des compétences professionnelles
 - approfondissements technologiques

c) La participation des professionnels et l'adaptation locale

Les professionnels participent à la vie d’un département à l’occasion des sessions de jurys d’admission et des sous commissions de passage et de délivrance de diplômes, pour la recherche et le suivi de stages ou la mise en œuvre de projets. Ils doivent également prendre une part active aux activités d’enseignement et d’encadrement.

Chaque IUT constitue pour la région dans laquelle il est implanté un atout de développement. Les Départements doivent donc avoir la possibilité d’adapter leurs enseignements aux opérations industrielles locales et régionales et aux débouchés potentiels. Les adaptations peuvent être définies en concertation avec les professionnels dans le cadre de leur participation. Elles peuvent atteindre 10 % des enseignements dispensés par le Département, en ne modifiant pas les objectifs généraux, ni le niveau de formation.

d) La taille des groupes

Les travaux dirigés sont organisés en groupe de 26 étudiants. La taille des groupes de travaux pratiques est de 13 étudiants.

Toutefois, certains TP doivent, pour des raisons de sécurité, comporter des effectifs plus restreints. Ces TP seront identifiés dans le programme pédagogique détaillé.

e) Unités d’enseignement

Les enseignements sont répartis en 2 ou 3 unités d’enseignement (UE) sur les quatre semestres de formation S1, S2, S3, S4.

S1 :
 UE 11 : Enseignements de spécialité
 UE 12 : Enseignements généraux

S2 :
 UE 21 : Enseignements de spécialité
 UE 22 : Enseignements généraux

S3 :
 UE 31 : Enseignements de spécialité du tronc commun
 UE 32 : Enseignements généraux
 UE 33 : Enseignements de spécialité de l’option Procédés
 Enseignements de spécialité de l’option Bio-Procédés

S4 :
 UE 41 : Enseignements de spécialité de l’option Procédés
 Enseignements de spécialité de l’option Bio-Procédés

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
UE 42 : Projets tutorés et stages

f) Modules
Les unités d’enseignement (UE) sont elles mêmes divisées en modules.
Le cœur de compétences est constitué de

- en S1 et S2 31 modules
- en S3 et S4
 - option Procédés : 16 modules
 - option Bio-Procédés : 18 modules

projets tutorés + stage industriel

Les modules complémentaires à réaliser en S3 et S4 sont au nombre de 9 pour les deux options. Une liste non exhaustive de modules complémentaires est proposée pour chaque option page 16. Ces modules sont à choisir en fonction du parcours personnel et professionnel de l’étudiant et des possibilités locales. Chaque département a la possibilité de créer de nouveaux modules complémentaires en fonction de la réalité industrielle régionale.

Pour l’option Procédés, 21 modules complémentaires sont proposés :

- 7 pour la catégorie ouverture scientifique (A)
- 6 pour le renforcement des compétences transversales et professionnelles (B)
- 8 pour l’approfondissement technologique (C)

Suivant le parcours choisi par l’étudiant et les possibilités offertes par le département, l’étudiant devra choisir 5 modules parmi ceux des catégories A et B, et 4 modules dans la catégorie C. Il est impératif que le module B1 (Anglais niveau B2) ou B (2ème langue vivante) figure dans le parcours de chaque étudiant.

Pour l’option Bio-Procédés, 25 modules complémentaires sont proposés :

- 10 pour la catégorie ouverture scientifique (A)
- 6 pour le renforcement des compétences transversales et professionnelles (B)
- 9 pour l’approfondissement technologique (C)

Suivant le parcours choisi par l’étudiant et les possibilités offertes par le département, l’étudiant devra choisir 5 modules parmi ceux des catégories A et B, et 4 modules dans la catégorie C. Il est impératif que le module B1 (Anglais niveau B2) ou B (2ème langue vivante) figure dans le parcours de chaque étudiant.

g) compétences professionnelles et niveau d’exigences
Les modules ont pour objectif l’acquisition de compétences professionnelles ou de savoir-faire ; les fiches modules sont donc rédigées en ce sens.
A chaque compétence professionnelle ou savoir-faire correspond un niveau d’exigence. Trois niveaux d’exigence ont été retenus :

INFORMER → exigence minimale : l’étudiant a reçu l’information
L’étudiant a reçu l’information, il a été sensibilisé aux techniques, aux problèmes posés. Son niveau de connaissances ne lui permet pas de choisir une technique ou une solution. Il est cependant suffisamment alerté pour recourir aux compétences d’un spécialiste. Il comprend et utilise la terminologie adaptée.

COMMUNIQUER → exigence standard : l’étudiant réalise sous contrôle
L’étudiant a reçu suffisamment d’informations et possède une pratique lui permettant de proposer une technique ou une solution à sa hiérarchie dans les cas courants. Dans les cas plus complexes, ses compétences lui permettent de dialoguer avec des spécialistes et de mettre en œuvre leurs prescriptions.

MAITRISER → exigence supérieure : l’étudiant est autonome
L’étudiant est parfaitement autonome dans sa tâche ; il a une connaissance précise des techniques existantes et une pratique suffisante lui permettant d’appliquer ses compétences dans la plupart des cas.

5-3 : Formation en deux semestres à temps plein (année spéciale)
Cette formation est conçue pour permettre à des étudiants de niveau L2 scientifique ou ayant le niveau scientifique correspondant à deux années d’études après le baccalauréat d’acquérir en deux semestres le niveau nécessaire à l’obtention du DUT de “Génie Chimique - Génie des Procédés”, option Procédés, ou Bio-procédés.

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Compte tenu de la formation antérieure des étudiants pour lesquels le programme a été établi, on considérera que leur niveau en mathématiques, physique et chimie sont équivalents à celui obtenu dans la formation au DUT Génie Chimique - Génie des Procédés en quatre semestres à temps plein. Il ne sera donc pas prévu d'enseignement théorique ou pratique dans ces disciplines.

5-4 : Formation par apprentissage et par formation continue

- **Règles d'obtention du DUT par apprentissage** :
Le DUT par apprentissage est préparé en alternance entre l'IUT et une entreprise. Les règles de l'alternance sont définies conjointement par l'IUT et les entreprises. Le programme pédagogique comprend le cœur de compétences de la formation. Le volume horaire est réduit dans les UE « Enseignements pratiques professionnels », la formation en entreprise servant de complément.

- **Règles d'obtention du DUT par Formation Continue** :
Le DUT s'obtient par capitalisation de modules sur l'ensemble des semestres d'enseignement. Les modules sont regroupés selon les Unités d'Enseignement définies dans le programme pédagogique national.

5-5 : Contrôle des connaissances

Les modalités de contrôle des connaissances et des aptitudes sont fixées par arrêté du 03 août 2005 relatif au DUT dans l'Espace européen de l'enseignement supérieur.

6. DESCRIPTIF DE LA FORMATION

A - GENIE CHIMIQUE - GENIE DES PROCEDES

L'enseignement de Génie Chimique-Génie des Procédés doit donner aux étudiants des connaissances scientifiques et technologiques sur la conception, le dimensionnement, la conduite et le contrôle d'unités pilotes ou industrielles de transformations de la matière et de l'énergie.

Aux semestres S1 et S2 sont abordés les enseignements de base (mécanique des fluides, thermodynamique, échanges thermiques, séparations solides-fluides, bilans, techniques graphiques, matériaux).

Aux semestres S3 et S4, quelle que soit l'option, le cœur de compétences porte sur l'étude des réacteurs ou bio-réacteurs, des opérations unitaires de séparation, notamment en relation avec l'environnement. Les opérations unitaires jouent un rôle fondamental et constituent la base de la discipline. Elles interviennent tout aussi bien dans les opérations de transformations physiques et/ou chimiques et/ou biologiques. C'est pourquoi, le cours de génie chimique - génie des procédés est commun aux deux options. Cependant, les travaux dirigés doivent correspondre à des exemples pris dans les activités spécifiques.

Pour l'option Procédés, les enseignements portent sur l'étude des grands procédés de l'industrie chimique. L'accent est mis plus particulièrement sur les aspects théoriques et technologiques des opérations de séparation (distillation, extraction, absorption, ...), de la conduite et du contrôle des procédés.

Pour l'option Bio-Procédés, les enseignements traitent plus spécifiquement des grands procédés de l'industrie agroalimentaire et pharmaceutique. L'accent est mis sur les bio-séparations.

Chaque thème est abordé sous l'aspect théorique et technologique avec une connaissance des différents matériaux et appareillages utilisés.

L'essentiel de cet enseignement est réalisé sous forme de travaux pratiques et de travaux dirigés. Les travaux pratiques réalisés sur des installations à l'échelle pilote, s'effectuent par petits groupes (6 à 7 étudiants) pour permettre un encadrement efficace en toute sécurité. L'Hygiène, la Sécurité et la protection de l'Environnement (HSE) sont systématiquement associées à l'enseignement pratique.

B - PROJET PERSONNEL ET PROFESSIONNEL (PPP)

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Le PPP est un travail de fond qui doit permettre à l'étudiant de se faire une idée précise des métiers du Génie Chimique – Génie des Procédés et de ce qu'ils nécessitent comme aptitudes personnelles. Il doit amener l'étudiant à se mettre en adéquation ses souhaits professionnels immédiats et futurs, ses aspirations personnelles, ses capacités et ses manques, afin de concevoir un parcours de formation cohérent avec le ou les métiers choisis.

Le PPP insiste sur la nécessité d'un engagement véritable de l'étudiant, d'un approfondissement de la notion de métier, au-delà des notions du diplôme et du salaire. L'étudiant doit réaliser son projet à partir d'expériences construites, vécues, capitalisées et confrontées avec d'autres. Il doit être le principal acteur de la démarche. L'ensemble des enseignants y participe quelle que soit leur spécialité afin de fournir à l'étudiant les informations nécessaires pour l'aider à choisir son orientation.

A l'issue du premier semestre, l'étudiant doit être capable d'identifier les secteurs d'activité, les métiers, les entreprises et les missions en rapport avec le diplôme qu'il prépare. Il doit également commencer à rechercher les liens entre son projet personnel et son projet professionnel. A l'issue du deuxième semestre, l'étudiant doit être capable d'effectuer le choix des modules différenciés et de définir son parcours universitaire. Il doit également être capable d'associer projet personnel et professionnel puis d'identifier les poursuites d'études conduisant au métier visé. Il doit avoir reçu une information sur les alternatives à la formation initiale (VAE, DIF, PST...).

C - MATHEMATIQUES

Cet enseignement sera abordé sous l'aspect des mathématiques appliquées.

Dans le cadre d'un parcours personnel de l'étudiant vers une insertion professionnelle immédiate, l'enseignement des mathématiques sera appliqué au génie chimique – génie des procédés dans les domaines de l'algèbre, de l'analyse et du traitement des données. Les applications pratiques des notions exposées seront nettement soulignées, en utilisant dans la mesure du possible comme thèmes d'exercices des exemples choisis dans les autres disciplines, notamment le génie chimique.

D - PHYSIQUE

Cet enseignement doit permettre à l'étudiant d'aborder des problèmes de métrologie, d'instrumentation, d'électrotechnique et d'électricité appliqués aux fonctionnements des procédés industriels.

E - CHIMIE - BIOCHIMIE

L'enseignement de chimie est destiné à donner aux étudiants les connaissances de base de la chimie et des lois sur lesquelles elle repose. Quatre parties seront traitées aux semestres S1 et S2 pour les deux options : la structure de la matière, la thermodynamique chimique, les équilibres chimiques et la cinétique chimique appliquée.

Pour l'option Procédés, le semestre S3 débute par l'étude des différentes méthodes physico-chimiques d'analyse de composés organiques et minéraux. L'enseignement se poursuit sur les notions de base de la chimie organique et minérale et présente les principaux dérivés fonctionnels en vue de comprendre les procédés de fabrication en chimie industrielle.

Pour l'option Bio-procédés, le but du cours de chimie - biochimie est de présenter la nature et les propriétés des molécules et produits de base de la matière biologique d'une part, et les différentes méthodes physico-chimiques d'analyse de ces molécules biologiques d'autre part. L'enseignement aborde les principaux composés biologiques et leurs applications industrielles potentielles. Les étudiants sont sensibilisés sur le fait que certaines molécules peuvent être obtenues aussi bien par biosynthèse que par synthèse chimique. Ces méthodes d'analyse pourront être appliquées aux manipulations de chimie organique et de biochimie.
Le but du cours de microbiologie est de donner aux étudiants des notions sur les réactions microbiologiques et leur mise en œuvre industrielle afin qu'ils puissent aborder le cours de Génie Biochimique relatif au calcul des réacteurs microbiologiques. Pour atteindre cet objectif, il est nécessaire que les étudiants maîtrisent :
- les concepts d’asepsie et de qualité hygiénique,
- les notions de bases sur les principaux groupes de micro-organismes d’intérêt industriel,
- les principes physiologiques et biochimiques de la réaction microbiologique.

Pour les deux options, en travaux pratiques, l’Hygiène, la Sécurité et la protection de l’Environnement (HSE) sont systématiquement associées.

F- HYGIENE SECURITE ENVIRONNEMENT QUALITE

L’enseignement de l’hygiène, de la sécurité de l’environnement et de la qualité donne aux étudiants des bases théoriques pour comprendre un système de management global.

Les notions d’assurance qualité, de normes « qualité, environnement et sécurité » et de la réglementation concernant l’hygiène sont nécessaires pour appréhender le monde professionnel.

L’enseignement aborde les outils de la qualité (bonnes pratiques et contrôles) ainsi que ceux permettant d’assurer la protection de l’environnement.

Concernant la sécurité, une première partie porte sur la culture de la sécurité. Elle permet de sensibiliser les étudiants aux notions essentielles de comportement et de sécurité du travail. Elle aborde entre autre l’identification et la classification des produits ainsi que la mise en œuvre de la prévention et des premiers secours. L’enseignement de l’environnement est abordé avec une présentation de la réglementation environnementale (gestion de l’environnement ; normes de rejet).

Toutes ces notions permettent à l’étudiant d’apporter les consignes en vigueur dans les enseignements pratiques puis dans l’entreprise en connaissance des risques et des moyens de protection mis en œuvre dans le cadre d’un système de management intégré.

Les enseignements de sécurité et environnement liés aux procédés sont ensuite repris dans l’enseignement de génie chimique - génie des procédés. Pour la sécurité, une partie porte sur la sécurité de procédés et met l’accent sur les risques liés au fonctionnement des installations et une partie traite de la sécurité industrielle abordant les aspects préventifs et les études de cas en intégrant l’ensemble des acteurs concernés. Pour l’environnement, on aborde l’étude des procédés de traitement des effluents liquides, gazeux et de traitement des déchets.

G - FORMATION GENERALE

Expression, communication
Le but de cet enseignement est d’apporter aux étudiants les compétences en expression écrite et orale qui leur permettent de développer leur personnalité, leurs capacités éventuelles de management, de valoriser leurs connaissances et de conduire leur vie professionnelle.

Il doit également permettre aux étudiants de développer leur culture générale sur le monde qui nous entoure, plus particulièrement celui de l’entreprise et son environnement économique, social et juridique.

Avec le souci d’une progression harmonieuse de l’étudiant sur deux ans, il faut veiller à l’équilibre, dans chaque module, entre communication et préparation à la vie professionnelle.

Aux semestres S1 et S2, l’accent est mis sur l’expression écrite et orale et le travail en équipe. Aux semestres S3 et S4, les techniques d’animation de groupe et de résolution de problèmes sont abordées.

Connaissance de l’entreprise
La connaissance du monde de l’entreprise nécessite d’aborder au semestre S2 les bases générales de l’économie, en laissant pour les semestres suivants les problèmes sociaux et juridiques.

Informatique – Bureautique
Cet enseignement a pour but d’initier l’étudiant à l’utilisation et l’exploitation de l’outil informatique et à l’utilisation de bases de données. Il ne doit en aucun cas être copié sur celui qui est destiné aux informaticiens ou aux programmeurs.

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
H - ANGLAIS

Les enseignements d'anglais sont basés sur les recommandations du Conseil de l'Europe pour l'apprentissage des langues et les expériences interculturelles de toutes sortes. L'étudiant doit acquérir peu à peu des niveaux de compétences qui sont évalués à l'aide des référentiels européens :
- trois niveaux de compétences : élémentaire (A1, A2), indépendant (B1, B2), expérimenté (C1, C2) ;
- pour chaque niveau de compétence, plusieurs critères sont pris en compte: écouter, lire, prendre part à une conversation, s'exprimer oralement en continu, écrire.
Le contenu des programmes correspond au niveau A aux semestres S1 et S2 et au niveau B au semestre S3. L'objectif est d'atteindre à la fin de S2 un niveau de compétences situé entre les niveaux A1 et A2 et à la fin de S3, un niveau de compétences situé entre les niveaux B1 et B2. Tout au long du cursus, les étudiants peuvent s'auto évaluer en utilisant les fiches de profil linguistique du « portfolio européen des langues ». Une certification du niveau final par un test comme le CLES ou le TOEIC est fortement recommandée.

I - PROJETS TUTORES

Ces projets ont pour but de développer l'autonomie de l'étudiant dans les domaines de la gestion de ses études et de l'acquisition des méthodes de travail et ceci individuellement ou collectivement. Ces projets tutorés impliquant l'ensemble de l'équipe pédagogique, doivent concourir à l'application des connaissances du programme pédagogique et au développement du sens de l'initiative et de l'autonomie.
Le sujet du projet au cours des semestres S1 et S2 est fourni par l'enseignant tuteur du projet ou par une entreprise. Il a souvent pour thème une étude ayant trait à la spécialité sans qu'il s'agisse d'une obligation. Il contribue à la réalisation du Projet Personnel et Professionnel.

Les projets au cours des semestres S3 et S4 portent sur l'ensemble des disciplines abordées durant les études. Ils sont réalisés en liaison étroite avec les enseignants de génie chimique–génie des procédés et dans certains cas, en partenariat avec le milieu industriel. L'ensemble du travail peut nécessiter une étude bibliographique, la conception d'une unité (calculs et dimensionnement), la réalisation de schémas, les choix d'appareillage, la recherche des matériels adaptés, des essais expérimentaux et une évaluation économique. Ces projets donnent lieu à un rapport écrit et à une soutenance orale.

J – STAGE INDUSTRIEL

Le stage industriel au cours du semestre S4 est de 10 semaines au minimum. Son organisation est souple pour permettre toutes les adaptations souhaitables. Il doit être, pour le futur diplômé, l'occasion de rassembler et d'appliquer ses connaissances à une étude ou la résolution d'un problème réel. L'encadrement du stage est assuré par les entreprises d'accueil. Chaque stagiaire est encadré par un professionnel. Le suivi du stage est assuré par le département, notamment par des visites dans les entreprises. A l'issue de son stage, l'étudiant fournit obligatoirement un rapport dont il expose le contenu devant un jury constitué d'enseignants et si possible de représentants du milieu industriel.

K - APPRENDRE AUTREMENT

L'objectif pédagogique est l'autonomie des étudiants dans l'apprentissage. Le rôle de l'enseignant est de faciliter l'accès au savoir et son appropriation. L'étudiant doit devenir acteur de sa formation grâce à l'enseignement de méthodologie de travail. Il acquiert le sens de l'initiative et développe son esprit critique et sa curiosité.
Cet enseignement s'effectue sous forme de travaux et projets individuels ou collectifs en mettant en œuvre une pédagogie par objectif.
Ces projets concernent l'ensemble des disciplines abordées durant les études.
Ceci implique l'utilisation des TICE (Techniques d'Information et de Communication pour l'Enseignement), de supports en ligne, d'outils informatiques interactifs, de travail en groupes, d'organisations de journées thématiques, d'une période banalisée au cours des semestres S1 et S2, de soutien,...
TABLEAU DES MATIÈRES PAR SEMESTRE ET PAR OPTION

S1 et S2 (984 heures dont : 205 hC, 389 hTD, 390 hTP) communs aux deux options

S1 (499 heures dont : 90 hC, 180 hTD, 229 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 11 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Mécanique des fluides</td>
<td>56 20 36</td>
<td>3,5</td>
</tr>
<tr>
<td>112</td>
<td>TP Mécanique des fluides</td>
<td>58</td>
<td>3</td>
</tr>
<tr>
<td>113</td>
<td>Thermodynamique - Énergétique</td>
<td>52 24 28</td>
<td>3,5</td>
</tr>
<tr>
<td>114</td>
<td>TP Thermodynamique - Énergétique</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>115</td>
<td>Techniques graphiques</td>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL S1 UE 11</td>
<td>244 44 64 136</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 12 : enseignements généraux</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Anglais niveau A1</td>
<td>32 16 16</td>
<td>2</td>
</tr>
<tr>
<td>122</td>
<td>Informatique - Bureautique</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>123</td>
<td>Communication – Culture de la sécurité</td>
<td>20 20</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>PPP</td>
<td>25 15 10</td>
<td>1</td>
</tr>
<tr>
<td>125</td>
<td>Chimie : Atomistique - Equilibres</td>
<td>38 16 20</td>
<td>2,5</td>
</tr>
<tr>
<td>126</td>
<td>TP Chimie : Atomistique - Equilibres</td>
<td>28 28</td>
<td>1,5</td>
</tr>
<tr>
<td>127</td>
<td>Physique : Electricité - Electro technique</td>
<td>25 15 15</td>
<td>1,5</td>
</tr>
<tr>
<td>128</td>
<td>TP Physique : Electricité - Electro technique</td>
<td>24 24</td>
<td>1,5</td>
</tr>
<tr>
<td>129</td>
<td>Mathématiques : Algèbre–Analyse (niveau 1)</td>
<td>50 20 30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL S1 UE 12</td>
<td>255 46 116 93</td>
<td>15</td>
</tr>
</tbody>
</table>

S2 (485 heures dont : 115 hC, 209 hTD, 161 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 21 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>211</td>
<td>Opérations Solide-Fluide-Environnement</td>
<td>40 15 25</td>
<td>2,5</td>
</tr>
<tr>
<td>212</td>
<td>TP Opérations Solide-Fluide-Environnement</td>
<td>24 24</td>
<td>1,5</td>
</tr>
<tr>
<td>213</td>
<td>Bilans - Initiation aux Opérations Unitaires</td>
<td>32 12 20</td>
<td>2</td>
</tr>
<tr>
<td>214</td>
<td>TP Bilans - Initiation aux Opérations Unitaires</td>
<td>16 16</td>
<td>1</td>
</tr>
<tr>
<td>215</td>
<td>Transferts Thermiques</td>
<td>48 20 28</td>
<td>3</td>
</tr>
<tr>
<td>216</td>
<td>TP Transferts Thermiques</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>217</td>
<td>Matériaux</td>
<td>28 8 20</td>
<td>2</td>
</tr>
<tr>
<td>218</td>
<td>TP Matériaux</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>TOTAL S2 UE 21</td>
<td>231 55 93 83</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 22 : enseignements généraux</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>221</td>
<td>Anglais niveau A2</td>
<td>32 16 16</td>
<td>2</td>
</tr>
<tr>
<td>222</td>
<td>Environnement – Qualité</td>
<td>30 10 10</td>
<td>2</td>
</tr>
<tr>
<td>223</td>
<td>Communication – Économie</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>224</td>
<td>PPP</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>225</td>
<td>Chimie : Thermochimie - Cinétique</td>
<td>36 16 20</td>
<td>2</td>
</tr>
<tr>
<td>226</td>
<td>TP Chimie : Thermochimie - Cinétique</td>
<td>16 16</td>
<td>1</td>
</tr>
<tr>
<td>227</td>
<td>Physique : Métrieologie - Instrumentation</td>
<td>34 14 20</td>
<td>2</td>
</tr>
<tr>
<td>228</td>
<td>TP Physique : Métrieologie - Instrumentation</td>
<td>16 16</td>
<td>1</td>
</tr>
<tr>
<td>229</td>
<td>Mathématiques : Algèbre-Analyse (niveau 2)</td>
<td>50 20 30</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>TOTAL S2 UE 22</td>
<td>254 60 116 78</td>
<td>15</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
OPTION : PROCÉDÉS

S3 et S4 (816 heures)

S3 (586 heures dont : 141 hC, 249 hTD, 196 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 31 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>Transfert de matière - Opérations Unitaires</td>
<td>60 25 35</td>
<td>3</td>
</tr>
<tr>
<td>312</td>
<td>Techniques séparatives et Environnement</td>
<td>50 20 30</td>
<td>3</td>
</tr>
<tr>
<td>313</td>
<td>TP Transfert de matière - Opérations unitaires</td>
<td>48 48</td>
<td>2,5</td>
</tr>
<tr>
<td>314</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>TOTAL S3 UE 31</td>
<td></td>
<td>188 51 81 56</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 32 : enseignements généraux</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>321</td>
<td>Anglais niveau B1</td>
<td>26 10 10</td>
<td>1</td>
</tr>
<tr>
<td>322</td>
<td>PPP - Communication</td>
<td>26 10 10</td>
<td>1</td>
</tr>
<tr>
<td>323</td>
<td>Module Complémentaire : catégorie B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>324</td>
<td>Chimie analytique</td>
<td>26 12 14</td>
<td>1</td>
</tr>
<tr>
<td>325</td>
<td>TP Chimie analytique</td>
<td>24 24</td>
<td>1,5</td>
</tr>
<tr>
<td>326</td>
<td>Chimie organique</td>
<td>24 10 14</td>
<td>1</td>
</tr>
<tr>
<td>327</td>
<td>TP Chimie organique</td>
<td>16 16</td>
<td>1,5</td>
</tr>
<tr>
<td>328</td>
<td>Module Complémentaire : A1 ou A2</td>
<td>40 14 18 8</td>
<td>1,5</td>
</tr>
<tr>
<td>TOTAL S3 UE 32</td>
<td></td>
<td>200 42 82 76</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 33 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>Réacteurs</td>
<td>50 20 30</td>
<td>2</td>
</tr>
<tr>
<td>332</td>
<td>TP Réacteurs</td>
<td>24 24</td>
<td>1,5</td>
</tr>
<tr>
<td>333</td>
<td>Conduite - Automatisme - Régulation</td>
<td>40 16 24</td>
<td>2</td>
</tr>
<tr>
<td>334</td>
<td>TP Conduite - Automatisme - Régulation</td>
<td>24 24</td>
<td>1,5</td>
</tr>
<tr>
<td>335</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>336</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>TOTAL S3 UE 33</td>
<td></td>
<td>198 48 86 64</td>
<td>10</td>
</tr>
</tbody>
</table>

S4 (230 heures dont : 34 hC, 76 hTD, 120 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 41 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>411</td>
<td>TP Techniques séparatives et Environnement</td>
<td>48 48</td>
<td>2,5</td>
</tr>
<tr>
<td>412</td>
<td>Bureau d'études</td>
<td>40 40</td>
<td>2</td>
</tr>
<tr>
<td>413</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>414</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>415</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>416</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>417</td>
<td>Sécurité des Procédés</td>
<td>22 10 12</td>
<td>1,5</td>
</tr>
<tr>
<td>TOTAL S4 UE 41</td>
<td></td>
<td>230 34 76 120</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 42 : stage industriel et projet tutoré</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>Projet tutoré théorique</td>
<td>300h</td>
<td>4</td>
</tr>
<tr>
<td>422</td>
<td>Projet tutoré pratique</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>422</td>
<td>Stage industriel</td>
<td></td>
<td>10 semaines minimum</td>
</tr>
<tr>
<td>TOTAL S4 UE 42</td>
<td></td>
<td></td>
<td>18</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
S3 (576 heures dont : 133 hC, 223 hTD, 220 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 31 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>311</td>
<td>Transfert de matière - Opérations Unitaires</td>
<td>60 25 35</td>
<td>3</td>
</tr>
<tr>
<td>312</td>
<td>Techniques séparatives et Environnement</td>
<td>30 12 18</td>
<td>1,5</td>
</tr>
<tr>
<td>313</td>
<td>TP Transfert de matière - Opérations unitaires</td>
<td>48 48 2,5</td>
<td></td>
</tr>
<tr>
<td>314</td>
<td>TP Techniques séparatives et Environnement</td>
<td>24 24 1,5</td>
<td></td>
</tr>
<tr>
<td>315</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

TOTAL S3 UE 31 192 43 69 80 10

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 32 : enseignements généraux</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>321</td>
<td>Anglais niveau B1</td>
<td>20 10 10</td>
<td>1</td>
</tr>
<tr>
<td>322</td>
<td>P & P - Communication</td>
<td>20 10 10</td>
<td>1</td>
</tr>
<tr>
<td>323</td>
<td>Module Complémentaire : catégorie B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>324</td>
<td>Chimie analytique</td>
<td>26 12 14</td>
<td>1</td>
</tr>
<tr>
<td>325</td>
<td>TP Chimie analytique</td>
<td>24 24 1,5</td>
<td></td>
</tr>
<tr>
<td>326</td>
<td>Chimie organique</td>
<td>24 10 14</td>
<td>1</td>
</tr>
<tr>
<td>327</td>
<td>TP Chimie organique</td>
<td>16 16 1,5</td>
<td></td>
</tr>
<tr>
<td>328</td>
<td>Module Complémentaire : A1 ou A2</td>
<td>40 14 18 8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

TOTAL S3 UE 32 200 42 82 76 10

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 33 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>331</td>
<td>Microbiologie</td>
<td>42 20 22</td>
<td>2</td>
</tr>
<tr>
<td>332</td>
<td>TP Microbiologie</td>
<td>24 24 1,5</td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>Chimie - Biochimie</td>
<td>34 16 18</td>
<td>2</td>
</tr>
<tr>
<td>334</td>
<td>TP Chimie - Biochimie</td>
<td>24 24 1,5</td>
<td></td>
</tr>
<tr>
<td>335</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>336</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

TOTAL S3 UE 33 184 48 72 64 10

S4 (240 heures dont : 60 hC, 112 hTD, 68 hTP)

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 41 : enseignements de spécialité</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>411</td>
<td>Réacteurs Biologiques</td>
<td>56 22 34</td>
<td>2</td>
</tr>
<tr>
<td>412</td>
<td>TP Réacteurs Biologiques</td>
<td>24 24 1,5</td>
<td></td>
</tr>
<tr>
<td>413</td>
<td>Génie des Bioprocédés</td>
<td>28 14 14</td>
<td>1,5</td>
</tr>
<tr>
<td>414</td>
<td>TP Génie des Bioprocédés</td>
<td>12 12 1</td>
<td></td>
</tr>
<tr>
<td>415</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>416</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>417</td>
<td>Module Complémentaire : catégorie A ou B</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
<tr>
<td>418</td>
<td>Module Complémentaire : catégorie C</td>
<td>30 6 16 8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

TOTAL S4 UE 41 240 60 112 68 12

<table>
<thead>
<tr>
<th>N° module</th>
<th>UE 42 : stage industriel et projet tutoré</th>
<th>Volume horaire</th>
<th>Coef.</th>
</tr>
</thead>
<tbody>
<tr>
<td>421</td>
<td>Projet tutoré théorique</td>
<td>300h</td>
<td>4</td>
</tr>
<tr>
<td>422</td>
<td>Projet tutoré pratique</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Stage industriel</td>
<td>10 semaines minimum</td>
<td>10</td>
</tr>
</tbody>
</table>

TOTAL S4 UE 42 18

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Liste des modules complémentaires pour l'option Procédés :

Ouverture Scientifique :
A1 : Mathématiques appliquées
A2 : Mathématiques appliquées et approfondies
A3 : Chimie
A4 : Programmation
A5 : Réacteurs
A6 : Transfert simultané de matière et de chaleur
A7 : Opérations Unitaires Discontinues

Renforcement des Compétences Professionnelles :
B1 : Anglais niveau B2
B2 : Connaissance de l'Entreprise
B3 : Management
B4 : Etude Technico-économique
B5 : 2ème langue vivante
B6 : Module libre (dans une autre structure ou en remplacement d'un autre module complémentaire)

Approfondissement Technologique :
C1 : Grands Procédés Chimiques
C2 : Qualité, Environnement
C3 : Sécurité Industrielle
C4 : Conduite des Procédés
C5 : Traitement des Solides
C6 : Dimensionnement d'Opérations Unitaires
C7 : Simulation
C8 : Industrialisation des Procédés

Liste des modules complémentaires pour l'option Bio-Procédés :

Ouverture Scientifique:
A1 : Mathématiques appliquées
A2 : Mathématiques appliquées et approfondies
A3 : Chimie
A4 : Programmation
A5 : Réacteurs
A6 : Transfert simultané de matière et de chaleur
A7 : Opérations Unitaires Discontinues
A8 : Biochimie
A9 : Microbiologie
A10 : Génie des Séparations

Renforcement des Compétences Professionnelles:
B1 : Anglais niveau B2
B2 : Connaissance de l'Entreprise
B3 : Management
B4 : Etude Technico-économique
B5 : 2ème langue vivante
B6 : Module libre (dans une autre structure ou en remplacement d'un autre module complémentaire)

Approfondissement Technologique:
C1 : Traitement des effluents
C2 : Qualité, Environnement
C3 : Sécurité Industrielle
C4 : Régulation - Conduite des Procédés
C5 : Traitement des Solides
C6 : Dimensionnement d'Opérations Unitaires
C7 : Simulation
C8 : Industrialisation des Procédés
C9 : Technologie des Colonnes

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
DEScriptif Des Fiches - Modules

1. Semestre S1

<table>
<thead>
<tr>
<th>GCGP</th>
<th>MECANIQUE DES FLUIDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>n° du module : 111</td>
</tr>
<tr>
<td>UE 11</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>20</td>
<td>36</td>
<td></td>
<td>3.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

MECANIQUE DES FLUIDES
- Caractérisation (masse volumique, viscosité, tensions superficielle et interfaciale).
- Statique des fluides, mesures de pressions et de niveaux.
- Dynamique des fluides parfaits, théorème de Bernoulli.
- Dynamique des fluides réels newtoniens, régimes d'écoulement, pertes de charge.
- Mesure de débits et de vitesses des fluides.
- Notions sur les fluides non newtoniens.
- Puissance à mettre en œuvre pour faire circuler un fluide dans une installation. Courbes de réseau.
- Pompes : hauteur manométrique totale, puissance absorbée, rendement, charge nette à l’aspiration (NPSH); courbes caractéristiques, point de fonctionnement, couplage.
- Le vide : unités de mesure, limites, vitesses de pompage, pompes à vide, appareils de mesure.

TECHNOLOGIE DU TRANSPORT DES FLUIDES
- Dispositifs d’étanchéité, canalisations et raccords : normalisations.
- Appareils de robinetterie et de mesure (débit, pression).
- Dimensionnement d’une conduite.
- Appareils de mise en mouvement des fluides : pompes, ventilateurs, pompes à vide.
- Etude technique d’éléments d’installations : pompes, robinets.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Description compétences/savoir-faire</td>
<td>Niveau requis</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------</td>
<td></td>
</tr>
<tr>
<td>TRAVAUX PRATIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mesure des propriétés thermo physiques : viscosité, masse volumique, tension superficielle, ...</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>• Régimes d’écoulement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mesures des pertes de charge.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mesures des débits et des pressions.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Démontage et remontage d'éléments d'installations : robinets, vannes, Pompes, ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Étude d'une pompe centrifuge et des couplages.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Étude d'un ventilateur.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pre-requis:

<table>
<thead>
<tr>
<th>Module 111</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>58</td>
<td>58</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
<td>TD</td>
<td>TP</td>
<td>Coeff</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>24</td>
<td>28</td>
<td></td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>THERMODYNAMIQUE</td>
<td>Informer</td>
</tr>
<tr>
<td>Corps pur, changement d'état.</td>
<td>X</td>
</tr>
<tr>
<td>Notion de système, transformations.</td>
<td>X</td>
</tr>
<tr>
<td>Gaz parfaits, gaz réels.</td>
<td></td>
</tr>
<tr>
<td>Premier principe, énergie interne, chaleurs massiques, enthalpie, transformations isotherme et adiabatique.</td>
<td>X</td>
</tr>
<tr>
<td>Second principe, entropie.</td>
<td></td>
</tr>
<tr>
<td>Diagrammes de Clapeyron, entropique, de Mollier.</td>
<td>X</td>
</tr>
<tr>
<td>Compressions et détentes isothermes, adiabatiques, polytropiques, détente libre à travers une vanne.</td>
<td>X</td>
</tr>
<tr>
<td>Machines thermiques : utilisation des diagrammes, cycles, rendements.</td>
<td>X</td>
</tr>
</tbody>
</table>

TECHNOLOGIE DES MACHINES THERMIQUES	

Compresseurs centrifuges, volumétriques, compression étagée, taux de compression, rendement volumique.	X
Turbines à vapeur, à gaz.	X
Production de froid : machines à compression de vapeur et à absorption.	X
Pompes à chaleur.	X
Liquéfacteurs, utilisation et stockage des gaz liquéfiés.	X

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVAUX PRATIQUES</td>
<td>Informer</td>
</tr>
<tr>
<td>Calorimétrie : mesures de chaleur spécifique, de chaleur de réaction.</td>
<td>X</td>
</tr>
<tr>
<td>Etude de compresseurs.</td>
<td></td>
</tr>
<tr>
<td>Etude de cycles thermiques (réfrigération, pompes à chaleur, moteurs, ...).</td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
GCGP
S1
UE 11

TECHNIQUES GRAPHIQUES
n° du module : 115

Pré-requis

Bac scientifique ou équivalent

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>50</td>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

DESSIN INDUSTRIEL ET SCHEMAS
- Initiation au dessin industriel : normalisation, lecture et réalisation de dessins et des schémas d'appareils de génie chimique.
- Représentation schématique en génie chimique : symboles et montages type, schémas d'installations.
- Notions d'isométrie appliquées à la représentation de tuyauteries.

TRAavaux PRATiques
- Schéma de procédés (flow-sheet).
- Dessin Assisté par Ordinateur (D.A.O) : utilisation de logiciels (réalisation de schémas).

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>16</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>ECOUTER</td>
<td></td>
</tr>
<tr>
<td>comprendre des mots familiers et des expressions très courantes si les gens parlent lentement et distinctement.</td>
<td></td>
</tr>
<tr>
<td>LIRE</td>
<td></td>
</tr>
<tr>
<td>comprendre des textes simples.</td>
<td></td>
</tr>
<tr>
<td>PRENDRE PART A UNE CONVERSATION</td>
<td></td>
</tr>
<tr>
<td>communiquer de façon simple avec un interlocuteur, poser des questions simples sur des sujets familiers et répondre à de telles questions.</td>
<td></td>
</tr>
<tr>
<td>S'EXPRIMER ORALEMENT EN CONTINU</td>
<td></td>
</tr>
<tr>
<td>pouvoir utiliser des expressions simples pour décrire une situation.</td>
<td></td>
</tr>
<tr>
<td>Ecrire</td>
<td></td>
</tr>
<tr>
<td>savoir écrire un texte court : carte postale, réponse à un questionnaire, ...</td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

21
Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>ARCHITECTURE D'UN MICRO-ORDINATEUR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unité centrale, périphériques, connectique.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTRODUCTION AU SYSTÈME D'EXPLOITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environnement de travail.</td>
</tr>
<tr>
<td>Manipulation de fichiers.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BUREAUTIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitement de texte.</td>
</tr>
<tr>
<td>Tableur.</td>
</tr>
<tr>
<td>Présentation assistée.</td>
</tr>
<tr>
<td>Initiation aux logiciels spécifiques utilisés en Génie des Procédés.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INTERNET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilisation de messagerie et sécurisation.</td>
</tr>
<tr>
<td>Utilisation de moteurs de recherche.</td>
</tr>
<tr>
<td>Téléchargement.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bac ou équivalent</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
COMMUNICATION - CULTURE DE LA SECURITÉ

n° du module : 123

Pré-requis

<table>
<thead>
<tr>
<th>Bac ou équivalent</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>20</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

COMMUNICATION
- Analyse d’une expérience (technique ou humaine), d’une situation, d’un texte ; recherche documentaire.
- Présentation orale d’une personne, d’une situation, d’un problème, directe ou téléphonique : prise de parole préparée ou improvisée.
- Expression écrite : norme de présentation d’un document, maîtrise de la langue, appropriation du vocabulaire, correction de la syntaxe, ...

CULTURE DE LA SECURITÉ
Cette partie permet de sensibiliser les étudiants aux notions essentielles de comportement et de sécurité du travail, en particulier dans les laboratoires, ateliers, halls pilotes et dans l’entreprise (chartes de sécurité, ...).
Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>16</td>
<td>20</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>STRUCTURE DE LA MATIERE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- L’atome.</td>
</tr>
<tr>
<td>- La classification périodique.</td>
</tr>
<tr>
<td>- La molécule.</td>
</tr>
<tr>
<td>- Liaisons chimiques et interactions.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LES EQUILIBRES EN SOLUTION AQUEUSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Lois générales qualitatives et quantitatives.</td>
</tr>
<tr>
<td>- Équilibres acido-basiques.</td>
</tr>
<tr>
<td>- Précipitation.</td>
</tr>
<tr>
<td>- Équilibres d’oxydoréduction.</td>
</tr>
<tr>
<td>- Équilibres de complexation.</td>
</tr>
</tbody>
</table>

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td></td>
<td>28</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Dosages volumétriques : acido-basiques, redox, complexométrie, gravimétrie.</td>
</tr>
<tr>
<td>- pH-métrie, potentiométrie.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>10</td>
<td>15</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>ELECTRICITE</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lois générales.</td>
<td>X</td>
</tr>
<tr>
<td>Etude des circuits électriques.</td>
<td>X</td>
</tr>
<tr>
<td>Notions d'électrostatique et d'électromagnétisme.</td>
<td>X</td>
</tr>
<tr>
<td>Electrocinétique.</td>
<td>X</td>
</tr>
<tr>
<td>Courants alternatifs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ELECTROTECHNIQUE</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machines électriques (transformateurs, moteurs asynchrones, ...).</td>
<td>X</td>
</tr>
<tr>
<td>Redresseurs, variateurs.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGIE ELECTRIQUE</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribution monophasée et triphasée, gestion de l'énergie.</td>
<td>X</td>
</tr>
<tr>
<td>La sécurité : mise à la terre, régime du neutre, protection différentielle.</td>
<td>X</td>
</tr>
<tr>
<td>Puissance et facteur de puissance. Relèvement du facteur de puissance.</td>
<td>X</td>
</tr>
<tr>
<td>Schémas électriques.</td>
<td>X</td>
</tr>
</tbody>
</table>

Travaux Pratiques

<table>
<thead>
<tr>
<th>Module 127</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td>24</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesure des grandeurs électriques.</td>
<td></td>
</tr>
<tr>
<td>Etude de circuits en régime sinusoidal.</td>
<td></td>
</tr>
<tr>
<td>Transformateurs.</td>
<td></td>
</tr>
<tr>
<td>Redresseurs, variateurs.</td>
<td></td>
</tr>
<tr>
<td>Branchements de moteurs.</td>
<td></td>
</tr>
<tr>
<td>Protection et sécurité électrique.</td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
<td>20</td>
<td>30</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>ANALYSE</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fonction d'une variable réelle : fonction continue, monotone et dérivable.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Formules de Taylor, développement limites : application au calcul des limites, au calcul d'erreurs et à la détermination de valeurs approchées.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fonctions usuelles : exponentielles, logarithmiques, trigonométriques et hyperboliques.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Représentations graphiques.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Notions sur les intégrales.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALGEBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polynômes - Fractions rationnelles – Décomposition en éléments simples.</td>
</tr>
<tr>
<td>Fonction d'une variable complexe : utilisation en électricité.</td>
</tr>
</tbody>
</table>
Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>CARACTERISATION DES SOLIDES DIVISES</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension, forme, masse volumique réelle, surface spécifique.</td>
<td>Informer</td>
</tr>
<tr>
<td>Echantillonnage, analyse granulométrique.</td>
<td></td>
</tr>
<tr>
<td>Porosité, masse volumique apparente.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OPERATIONS SOLIDE-FLUIDE</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Écoulement à travers les milieux poreux, perte de charge, perméabilité, résistance.</td>
<td>Informer</td>
</tr>
<tr>
<td>Filtration.</td>
<td></td>
</tr>
<tr>
<td>Décanlation, centrifugation.</td>
<td></td>
</tr>
<tr>
<td>Fluidisation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TECHNOLOGIE DU TRAITEMENT ET DU TRANSPORT DE SOLIDE</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concasseurs, broyeurs, tamiseurs.</td>
<td>Informer</td>
</tr>
<tr>
<td>Filtres, décanteurs, séparateurs centrifuges.</td>
<td></td>
</tr>
<tr>
<td>Séchoirs, granulateurs.</td>
<td></td>
</tr>
<tr>
<td>Transporteurs de solides, séparateurs solide-gaz.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APPLICATIONS À LA PROTECTION DE L'ENVIRONNEMENT</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traitement des eaux.</td>
<td>Informer</td>
</tr>
<tr>
<td>Traitement de l'air.</td>
<td></td>
</tr>
</tbody>
</table>
GCGP
S2
UE 21
Travaux pratiques
OPERATIONS SOLIDE – FLUIDE - ENVIRONNEMENT
n° du module : 212

<table>
<thead>
<tr>
<th>Modules 111 ; 211</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyse granulométrique, caractérisation des solides.</td>
</tr>
<tr>
<td>Broyage, tamisage.</td>
</tr>
<tr>
<td>Filtration.</td>
</tr>
<tr>
<td>Décantation, centrifugation.</td>
</tr>
<tr>
<td>Lits fixes et lits fluidisés.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Module 113</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>32</td>
<td>12</td>
<td>20</td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>BILANS</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- Bilans de matière :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bilans en régime permanent sans réaction chimique.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bilans avec réaction chimique.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bilans avec recyclage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bilans d'énergie (enthalpie, ...)</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Bilan dans une opération unitaire.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Notions sur les bilans différentiels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Initiation au transfert de masse : modèle du double film.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Modules 113 ; 213</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVAUX PRATIQUES</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- Bilans de matière et de chaleur dans des opérations unitaires (évaporation, séchage, cristallisation, extraction, ...)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TRANSFERTS THERMIQUES

Bilan d’énergie.

Convection : loi de Newton, convection sans chargement d’état et avec changement d’état (condensation et ébullition).

Rayonnement : réception du rayonnement par un corps ; lois du rayonnement du corps noir, émission des corps réels ; échanges radiatifs entre surfaces.

Echanges entre fluides séparés par une paroi ; isolation thermique, calorifuges.

Echangeurs : différents types ; profils de température et bilans ; étude des performances ; encrassement.

TECHNOLOGIE DE LA PRODUCTION ET DU TRANSFERT DE CHALEUR

Echangeurs de chaleur :

- Echangeurs tubulaires, à plaques, à serpentinis, à spirales, platulaires.
- Bouilleurs, condenseurs, évaporateurs.
- Calculs des echangeurs suivant les codes en vigueur.

Chauffage industriel :

- Combustibles liquides, solides, gazeux ; pouvoir calorifique.
- Différents types de fours et de chaudière.
- Production et utilisation de la vapeur.
- Purgeurs.
- Utilisation des thermofluides.
- Circuits de chauffage.

Les calorifuges

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 111 ; 113</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRANSFERTS THERMIQUES</td>
<td>Informer</td>
</tr>
<tr>
<td>Bilan d’énergie.</td>
<td></td>
</tr>
<tr>
<td>Convection : loi de Newton, convection sans chargement d’état et avec changement d’état (condensation et ébullition).</td>
<td></td>
</tr>
<tr>
<td>Rayonnement : réception du rayonnement par un corps ; lois du rayonnement du corps noir, émission des corps réels ; échanges radiatifs entre surfaces.</td>
<td></td>
</tr>
<tr>
<td>Echanges entre fluides séparés par une paroi ; isolation thermique, calorifuges.</td>
<td></td>
</tr>
<tr>
<td>Echangeurs : différents types ; profils de température et bilans ; étude des performances ; encrassement.</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGIE DE LA PRODUCTION ET DU TRANSFERT DE CHALEUR</td>
<td></td>
</tr>
<tr>
<td>Echangeurs de chaleur :</td>
<td></td>
</tr>
<tr>
<td>Echangeurs tubulaires, à plaques, à serpentinis, à spirales, platulaires.</td>
<td></td>
</tr>
<tr>
<td>Bouilleurs, condenseurs, évaporateurs.</td>
<td></td>
</tr>
<tr>
<td>Calculs des echangeurs suivant les codes en vigueur.</td>
<td></td>
</tr>
<tr>
<td>Chauffage industriel :</td>
<td></td>
</tr>
<tr>
<td>Combustibles liquides, solides, gazeux ; pouvoir calorifique.</td>
<td></td>
</tr>
<tr>
<td>Différents types de fours et de chaudière.</td>
<td></td>
</tr>
<tr>
<td>Production et utilisation de la vapeur.</td>
<td></td>
</tr>
<tr>
<td>Purgeurs.</td>
<td></td>
</tr>
<tr>
<td>Utilisation des thermofluides.</td>
<td></td>
</tr>
<tr>
<td>Circuits de chauffage.</td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Modules 111 ; 113 ; 215</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVAUX PRATIQUES</td>
</tr>
<tr>
<td>• Production, transport et utilisation de la vapeur.</td>
</tr>
<tr>
<td>• Conductibilité thermique et calorifuges.</td>
</tr>
<tr>
<td>• Echangeurs de chaleur, condenseurs, évaporateurs.</td>
</tr>
<tr>
<td>• Convections libre et forcée.</td>
</tr>
<tr>
<td>• Pertes par rayonnement.</td>
</tr>
<tr>
<td>• Pouvoir calorifique d'un combustible.</td>
</tr>
<tr>
<td>• Démontage et remontage de purgeurs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
MATERIAUX

Pré-requis

<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>28</td>
<td>20</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>MATERIAUX</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractéristiques des matériaux :</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- Notions sur les métaux et alliages, matières plastiques, matériaux composites.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Désignation des matériaux, normalisation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Notions sur les traitements des matériaux.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résistance des matériaux :</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- Problèmes simples en traction, compression, cisaillement, torsion des tubes et arbres cylindriques, flexion plane, flambage, fluage.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Calcul d'épaisseur de paroi d'appareils sous pression et sous vide.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Réglementation et contrôle des appareils sous pression.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CORROSION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>- Divers types de corrosion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Choix des matériaux.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Protection contre la corrosion.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Travaux pratiques

Pré-requis

<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>15</td>
<td></td>
<td>15</td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Essais de traction simple et fluage, chocs thermiques.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mise en œuvre des matériaux.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

32
<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>16</td>
<td>16</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOUETER</td>
<td></td>
</tr>
<tr>
<td>comprendre des expressions et un vocabulaire très fréquent relatifs à la vie courante, au travail, ... Saisir l'essentiel d'annonces et de messages clairs et simples.</td>
<td>X</td>
</tr>
<tr>
<td>LIRE</td>
<td></td>
</tr>
<tr>
<td>comprendre des textes courts et simples ; trouver une information particulière dans des documents courants.</td>
<td>X</td>
</tr>
<tr>
<td>PRENDRE PART A UNE CONVERSATION</td>
<td></td>
</tr>
<tr>
<td>communiquer lors de tâches simples et habituelles : se présenter, faire une présentation simple, transmettre des informations vécues, ...</td>
<td>X</td>
</tr>
<tr>
<td>S'EXPRIMER ORALEMENT EN CONTINU</td>
<td></td>
</tr>
<tr>
<td>décrire en termes simples les conditions de vie, la formation suive, un travail réalisé, résumer un document.</td>
<td>X</td>
</tr>
<tr>
<td>ECRIRE</td>
<td></td>
</tr>
<tr>
<td>écrire des notes et des messages, une lettre, ...</td>
<td>X</td>
</tr>
<tr>
<td>Pré-requis</td>
<td>Total</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>Bac ou équivalent</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUALITE</td>
<td>Informer</td>
</tr>
<tr>
<td>• Concept de la qualité totale.</td>
<td></td>
</tr>
<tr>
<td>• Normes.</td>
<td></td>
</tr>
<tr>
<td>• Certifications.</td>
<td></td>
</tr>
<tr>
<td>ENVIRONNEMENT</td>
<td></td>
</tr>
<tr>
<td>• Caractérisation et critères de pollution (physiques, chimiques et biologiques).</td>
<td></td>
</tr>
<tr>
<td>• Aspects législatifs et règlementaires.</td>
<td></td>
</tr>
<tr>
<td>• Normes de rejets.</td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
COMMUNICATION - ÉCONOMIE

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 122 : 123</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CM</td>
<td>TD</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>COMMUNICATION</td>
<td></td>
</tr>
<tr>
<td>Analyse critique de documents, recherche d’informations.</td>
<td></td>
</tr>
<tr>
<td>Expression écrite : élaboration d’un dossier.</td>
<td></td>
</tr>
<tr>
<td>Ouverture culturelle : traitement de questions d’actualité, ...</td>
<td>X</td>
</tr>
<tr>
<td>Rédaction de comptes-rendus, de rapports, de résumés, ...</td>
<td></td>
</tr>
<tr>
<td>INITIATION A L’ÉCONOMIE</td>
<td></td>
</tr>
<tr>
<td>Démographie : population active, groupes socio-professionnels.</td>
<td>X</td>
</tr>
<tr>
<td>Activités économiques.</td>
<td>X</td>
</tr>
<tr>
<td>Types d’entreprises.</td>
<td>X</td>
</tr>
<tr>
<td>Organisation fonctionnelle dans l’entreprise.</td>
<td>X</td>
</tr>
<tr>
<td>Entreprise et ses partenaires économiques.</td>
<td>X</td>
</tr>
<tr>
<td>Evolution des industries des procédés nationales et internationales : sociétés, regroupements.</td>
<td>X</td>
</tr>
<tr>
<td>Économie et stratégie d’entreprise.</td>
<td>X</td>
</tr>
<tr>
<td>Gestion technico-économique.</td>
<td>X</td>
</tr>
<tr>
<td>Evaluation économique d’un procédé.</td>
<td>X</td>
</tr>
</tbody>
</table>

PROJET PERSONNEL ET PROFESSIONNEL (PPP)

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total CM</td>
<td>TD</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>PROJET PERSONNEL ET PROFESSIONNEL</td>
<td></td>
</tr>
<tr>
<td>Réflexion sur le parcours professionnel.</td>
<td></td>
</tr>
<tr>
<td>Recherche d’informations sur le parcours choisi.</td>
<td>X</td>
</tr>
<tr>
<td>Préparation d’un projet personnel et rédaction d’un rapport sur ce projet.</td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Modules 113 : 125</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36</td>
<td>16</td>
<td>20</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>THERMODYNAMIQUE CHIMIQUE</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Les principes de la thermodynamique et leurs applications.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Application à l'équilibre chimique.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CINETIQUE CHIMIQUE</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Réactions homogènes, hétérogènes (vitesse de réaction, loi d'Arrhenius, énergie d'activation).</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Initiation aux notions élémentaires du Génie de la Réaction Chimique homogène.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Modules 113 ; 125 ; 225</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16</td>
<td></td>
<td>16</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinétique chimique en phase liquide (détermination de la constante de vitesse d'une réaction, de l'énergie d'activation, ...).</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Cinétique chimique en phase gazeuse.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etude d'un réacteur fermé adiabatique.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PHYSIQUE METROLOGIE - INSTRUMENTATION

n° du module : 227

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 227</td>
<td>34</td>
<td>14</td>
<td>20</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>METROLOGIE INDUSTRIELLE</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Chaînes de mesures - Les capteurs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etalonnage de capteurs.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAITEMENT DE L’INFORMATION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Information et signal.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Acquisition de l’information.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Traitement du signal.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGIE DE L’INSTRUMENTATION</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Capteurs, transmetteurs, convertisseurs : pression, débit, température, niveau, ...</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Actionneurs.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Travaux pratiques

n° du module : 228

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 227</td>
<td>16</td>
<td></td>
<td></td>
<td>16</td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVAUX PRATIQUES</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mesures et essais portant sur :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capteurs et transmetteurs industriels.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamique d’un capteur.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td>Total</td>
<td>CM</td>
<td>TD</td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Module 129</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSE</td>
<td>Informer</td>
</tr>
<tr>
<td>- Intégrale d’une fonction : définition et propriétés de l’intégrale de Riemann ; calcul d’une intégrale : changement de variables — intégration par parties — intégration de fractions rationnelles, application au calcul des aires et au calcul approché de surfaces.</td>
<td>X</td>
</tr>
<tr>
<td>- Équations différentielles : premier ordre (à variables séparables, linéaires à coefficients constants, linéaires à coefficients variables), deuxième ordre (linéaires à coefficients constants), systèmes d’équations différentielles.</td>
<td>X</td>
</tr>
<tr>
<td>- Notions sur les fonctions de plusieurs variables : différentielle totale, dérivées partielles, extrema.</td>
<td>X</td>
</tr>
<tr>
<td>- Transformation de Laplace, application à la résolution des équations aux dérivées partielles : fonction de transfert.</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALGEBRE</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Notions d’algèbre linéaire : espaces vectoriels.</td>
<td>X</td>
</tr>
<tr>
<td>- Éléments de calcul matriciel.</td>
<td>X</td>
</tr>
<tr>
<td>- Résolution de système d’équations linéaires.</td>
<td>X</td>
</tr>
</tbody>
</table>
3. SEMESTRE S3 OPTION PROCEDES

<table>
<thead>
<tr>
<th>GCGP-Procedes</th>
<th>TRANSFERT DE MATIERE – OPERATIONS UNITAIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>n° du module : 311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 111 : 113 ; 211 ; 213 ; 215 ; 217</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>25</td>
<td>35</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>EQUILIBRES ENTRE PHASES</td>
<td></td>
</tr>
<tr>
<td>• Corps purs, variance, règles de phases.</td>
<td></td>
</tr>
<tr>
<td>• Equilibres liquide-liquide.</td>
<td></td>
</tr>
<tr>
<td>• Equilibres liquide-solide.</td>
<td></td>
</tr>
<tr>
<td>• Equilibres liquide-vapeur.</td>
<td></td>
</tr>
<tr>
<td>ECHANGES DE MATIERE – OPERATIONS UNITAIRES</td>
<td></td>
</tr>
<tr>
<td>• Etage théorique, étage réel.</td>
<td></td>
</tr>
<tr>
<td>• Cascade d'étages théoriques ; nombre d'étages théoriques, méthode de calcul graphique et numérique ; bilans de matière et de chaleur.</td>
<td></td>
</tr>
<tr>
<td>• Extractions liquide – liquide, solide – liquide.</td>
<td></td>
</tr>
<tr>
<td>• Cristallisation industrielle.</td>
<td></td>
</tr>
<tr>
<td>DISTILLATION</td>
<td></td>
</tr>
<tr>
<td>• Distillation continue d’un mélange binaire : Méthode de Mac Cabe et Thiele et de Ponchon Savart.</td>
<td></td>
</tr>
<tr>
<td>• Distillation discontinue.</td>
<td></td>
</tr>
<tr>
<td>• Distillations des azéotropes et d’un mélange multi-composants.</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGIE DU TRANSFERT DE MATIERE</td>
<td></td>
</tr>
<tr>
<td>• Cristalliseurs.</td>
<td></td>
</tr>
<tr>
<td>• Extracteurs liquide-liquide et solide-liquide.</td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

OPERATIONS UNITAIRES
- Absorption, désorption.
- Adsorption (cycle, régénération).
- Séparation par membranes.
- Coagulation, flocculation.
- Évaporation.
- Diagramme de l'air humide, humidification, séchage.

APPLICATIONS À L'ENVIRONNEMENT
- Traitements des effluents gazeux et liquides et des déchets.

COLONNES INDUSTRIELLES
- Conception et dimensionnement des colonnes, hydrodynamique des colonnes.

TECHNOLOGIE DES COLONNES INDUSTRIELLES
- Colonnes à garnissage, divers types de garnissage, nature, propriétés, choix.
- Colonnes à plateaux, à calottes, à soupapes, à grilles perforées.
- Comparaison des colonnes à plateaux et des colonnes à garnissages, critères de choix, implantation.
- Choix du matériel.
GCGP-Procédés
S3
UE 31

Travaux Pratiques
TRANSFERT DE MATIERE – OPERATIONS UNITAIRES

n° du module : 313

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 111 ; 113 ; 211 ; 213 ; 215 ; 311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAVAUX PRATIQUES</td>
<td>Informer</td>
</tr>
<tr>
<td>• Équilibres liquide – liquide, liquide – vapeur, liquide – solide.</td>
<td></td>
</tr>
<tr>
<td>• Distillations continue et discontinue.</td>
<td></td>
</tr>
<tr>
<td>• Extractions liquide – liquide et liquide - solide.</td>
<td></td>
</tr>
<tr>
<td>• Séchage et humidification.</td>
<td></td>
</tr>
<tr>
<td>• Cristallisation.</td>
<td></td>
</tr>
</tbody>
</table>
GCGP-Procédés

S3
UE 32

ANGLAIS
Niveau B1 (portfolio européen)

n° du module : 321

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 121 ; 221</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
</table>
| **ÉCOUTER** | Informer
comprendre les points essentiels sur des sujets familiers :
présentation d’une expérience, consignes à caractère
technique et scientifique, mode opératoire. Comprendre
l’essentiel d’émissions de radio ou télévision sur l’actualité. | X |
| **LIRE** | Informer
comprendre des textes relatifs au travail : notice d’appareil,
document technique ; comprendre la description
d’événements, l’expression de sentiments (lettres). | X |
| **PRENDRE PART A UNE CONVERSATION** | Informer
converser sans préparation sur des sujets familiers ; faire
face à la majorité des situations que l’on peut rencontrer au
cours d’un voyage. | X |
| **S’EXPRIMER ORALEMENT EN CONTINU** | Informer
racconter des expériences, des événements. | X |
| **ÉCRIRE** | Informer
écrire des textes sur des sujets familiers : rédaction d’un
CV, d’une lettre de motivation, d’une demande de stage ou
de documentation. | X |

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>122 ; 123 ; 124 ; 223 ; 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>20</td>
</tr>
<tr>
<td>CM</td>
<td>10</td>
</tr>
<tr>
<td>TD</td>
<td>10</td>
</tr>
<tr>
<td>TP</td>
<td>10</td>
</tr>
<tr>
<td>Coeff</td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

PROJET PERSONNEL ET PROFESSIONNEL
- Formalisation d'un bilan personnel.
- Préparation à l'entretien d'embauche.
- Rédaction du rapport PPP.
- Conduite de réunion.

EXPRESSION ET COMMUNICATION
- Analyse d'une expérience (technique ou humaine), d'une situation, d'un texte ; recherche documentaire.
- Rédaction de comptes-rendus, de rapports, résumés, circulaires, lettres, notes de service, bons de commandes...
- Présentation orale d'une personne, d'une situation, d'un problème, directe ou téléphonique.
- Présentation orale et écrite de résultats d'expérimentation.
- Techniques de recherche d'emplois.

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
CHIMIE ANALYTIQUE

Module S3, UE 32

n° du module : 324

Pré-requis

<table>
<thead>
<tr>
<th>Modules 125 ; 225</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>26</td>
<td>12</td>
<td>14</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

CHIMIE ANALYTIQUE

- Méthodes chromatographiques (CPG, CPL).
- Méthodes spectrophotométriques (UV-visible, IR).
- Méthodes électrochimiques (conductimétrie, potentiométrie,...).
- Analyseurs en ligne.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GCGP-Procéédés

Module S3, UE 32

n° du module : 325

Pré-requis

<table>
<thead>
<tr>
<th>Modules 125 ; 225 ; 324</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td></td>
<td></td>
<td>24</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES

- Analyses instrumentales.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
CHIMIE ORGANIQUE

n° du module : 326

Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>10</td>
<td>14</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

CHIMIE ORGANIQUE
- Description des différentes fonctions et principales réactions rencontrées en chimie organique.
- Application à l'étude des principales familles de composés organiques:
 - hydrocarbures.
 - dérivés halogénés.
 - alcools.
 - composés carbonylés.
 - amines.
 - polymères.

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>Communiquer</td>
</tr>
<tr>
<td>Maîtriser</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Travaux pratiques

CHIMIE ORGANIQUE

n° du module : 327

Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td>16</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES
- Techniques de base, initiation à la synthèse et au contrôle.
GCUP-Procédés

S3

<table>
<thead>
<tr>
<th>UE 33</th>
<th>REACTEURS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n° du module : 331</td>
</tr>
</tbody>
</table>

Pré-requis

| Modules | 111 ; 113 ; 125 ; 129 ; 213 ; 215 ; 225 ; 229 |

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>20</td>
<td>30</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

REACTEURS CHIMIQUES

- Réacteurs continus, réacteurs discontinus.
- Réacteur parfaitement agité, réacteur piston.
- Association de réacteurs.
- Influence des facteurs physiques (pression, température,...).
- Bilans matière et thermique.
- Dimensionnement de réacteurs.
- Prise en compte des contraintes de sécurité.
- Notions de distribution de temps de séjour.

TECHNOLOGIE DES REACTEURS

- Différents types de réacteurs : tubulaires, agités.

AGITATION MECANIQUE

- Divers systèmes d’agitation et critères de choix.
- Puissance consommée, débits de pompage et de circulation.
- Notions de mélange, mise en suspension d’un solide, système gaz-liquide, liquide – liquide.
- Transfert de chaleur.

GCUP-Procédés

S3

<table>
<thead>
<tr>
<th>UE 33</th>
<th>Travaux pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>REACTEURS</td>
</tr>
<tr>
<td></td>
<td>n° du module : 332</td>
</tr>
</tbody>
</table>

Pré-requis

| Modules | 111 ; 113 ; 125 ; 129 ; 213 ; 215 ; 225 ; 229 ; 331 |

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>24</td>
<td></td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TRAVAUX PRATIQUES

- Réacteurs chimiques continus et discontinus.
- Distribution des Temps de Séjour, hydrodynamique.
- Agitation, mélange.
<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTOMATIQUE DES SYSTEMES DISCRETS</td>
<td></td>
</tr>
<tr>
<td>- Notions d'algèbre logique.</td>
<td>X</td>
</tr>
<tr>
<td>- Fonctions logiques – Logigrammes.</td>
<td>X</td>
</tr>
<tr>
<td>- Analyse des automatismes séquentiels par le GRAFCET (électriques ou électropneumatiques).</td>
<td>X</td>
</tr>
<tr>
<td>- Logique programmée, automate programmable, application au pilotage de procédés.</td>
<td>X</td>
</tr>
<tr>
<td>AUTOMATIQUE DES SYSTEMES CONTINUS</td>
<td></td>
</tr>
<tr>
<td>- Principes de la régulation automatique.</td>
<td>X</td>
</tr>
<tr>
<td>- Grandeurs à régler, grandeurs de réglage, perturbations.</td>
<td>X</td>
</tr>
<tr>
<td>- Les appareils de régulation : capteurs, transmetteurs, convertisseurs, régulateurs, actionneurs.</td>
<td>X</td>
</tr>
<tr>
<td>- Performances d'un système bouclé, précision, rapidité, stabilité.</td>
<td>X</td>
</tr>
<tr>
<td>- Régulation des actions P.I.D. d'un régulateur.</td>
<td>X</td>
</tr>
<tr>
<td>- Notions sur l'application au contrôle des procédés.</td>
<td>X</td>
</tr>
</tbody>
</table>
Travaux pratiques
CONDUITE – AUTOMATISME - REGULATION

n° du module : 334

Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>111 ; 113 ; 127 ; 129 ; 227 ; 229 ; 333</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>24</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES
- Automatismes logiques : programmation sur automate, schémas à contact de GRAFCET.
- Étude d’un organe de commande (vanne...).
- Conduite automatisée d’installations pilotées par un système numérique de contrôle commande.
- Simulation numérique sur micro-ordinateur de procédés et de boucles de régulation.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
4. SEMESTRE S4 OPTION PROCEDES

<table>
<thead>
<tr>
<th>GCGP-Procédés</th>
<th>Travaux pratiques TECHNIQUES SEPARATIVES et ENVIRONNEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>n° du module : 411</td>
</tr>
<tr>
<td>UE 41</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

Modules 111; 113; 211; 213; 215; 222; 311; 312

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td></td>
<td>48</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

Niveau requis

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absorption.</td>
</tr>
<tr>
<td>Adsorption.</td>
</tr>
<tr>
<td>Séchage.</td>
</tr>
<tr>
<td>Coagulation, flocculation.</td>
</tr>
<tr>
<td>Séparations membranaires.</td>
</tr>
<tr>
<td>Hydrodynamicque des colonnes.</td>
</tr>
<tr>
<td>Application aux traitements d’effluents.</td>
</tr>
</tbody>
</table>

X

<table>
<thead>
<tr>
<th>GCGP-Procédés</th>
<th>BUREAU D’ETUDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>n° du module : 412</td>
</tr>
<tr>
<td>UE 41</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

Modules 111; 113; 115; 211; 213; 215; 217; 311; 312; 331; 332; 333; 335

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td></td>
<td></td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

Niveau requis

<table>
<thead>
<tr>
<th>BUREAU D’ETUDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Étude de procédés :</td>
</tr>
<tr>
<td>. Recherche bibliographique.</td>
</tr>
<tr>
<td>. Economie d’énergie.</td>
</tr>
<tr>
<td>. Sécurité, environnement.</td>
</tr>
<tr>
<td>. Schéma de principe.</td>
</tr>
<tr>
<td>. Choix des appareils (matériaux, dimensionnement).</td>
</tr>
<tr>
<td>. Automatisation (choix des boucles).</td>
</tr>
<tr>
<td>. Normes et réglementation d’implantation.</td>
</tr>
<tr>
<td>. Schéma de procédé.</td>
</tr>
<tr>
<td>. Schéma détaillé.</td>
</tr>
</tbody>
</table>

X

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

49
<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 111 ; 113 ; 115 ; 211 ; 213 ; 215 ; 217 ; 311 ; 312 ; 331 ; 333</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>22</td>
<td>10</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>Dangers potentiels, concept de risques.</td>
<td></td>
</tr>
<tr>
<td>Indicateurs.</td>
<td>X</td>
</tr>
<tr>
<td>Aspects législatifs et normatifs.</td>
<td></td>
</tr>
<tr>
<td>Analyse préliminaire des risques.</td>
<td></td>
</tr>
<tr>
<td>Méthodes d’analyse des risques (arbres des causes, méthode HAZOP, ...).</td>
<td></td>
</tr>
<tr>
<td>Emballage thermique.</td>
<td></td>
</tr>
<tr>
<td>Etude de cas.</td>
<td>X</td>
</tr>
</tbody>
</table>

© Ministère de l’enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Pré-requis

<table>
<thead>
<tr>
<th>300 heures</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projet tutoré théorique</td>
<td>4</td>
</tr>
<tr>
<td>Projet tutoré pratique</td>
<td>4</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

Ces projets ont pour but de développer l'autonomie de l'étudiant dans les domaines de la gestion de ses études et de l'acquisition des méthodes de travail et ceci individuellement ou collectivement. Ces projets tutorés doivent concourir à l'assimilation des connaissances du programme pédagogique et développer le sens de l'initiative et de l'autonomie.

Les projets pourront balayer l'ensemble des disciplines abordées durant les études et les sujets de la spécialité devront être privilégiés en S3 et S4.

Ces projets seront réalisés en liaison étroite avec les enseignants et devront permettre à l'étudiant de mettre en application ou d'approfondir l'ensemble des enseignements dispensés au cours des trois semestres précédents. L'ensemble du travail pourra nécessiter :

- une étude bibliographique,
- l'analyse de documents scientifiques et techniques,
- des calculs prévisionnels d'appareillage,
- la recherche du matériel et des matériaux dans des catalogues commerciaux,
- la réalisation de schémas de certains sous-ensembles,
- des essais expérimentaux,
- une évaluation économique sommaire.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
STAGE INDUSTRIEL

n° du module : 422

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tous les modules de S1, S2 et S3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Le stage industriel doit être, pour le futur diplômé, l’occasion de rassembler et d’appliquer ses connaissances à une étude ou la résolution d’un problème réel. Le suivi et l’encadrement d’un stage sont assurés par le département, notamment par des visites dans les entreprises d’accueil. Chaque stagiaire sera parrainé par un enseignant et un professionnel. A l’issue de son stage, l’étudiant fournit obligatoirement un rapport dont il expose le contenu devant un jury constitué d’enseignants et si possible de représentants du milieu industriel.</td>
<td>Informer</td>
</tr>
</tbody>
</table>
5. SEMESTRE S3 OPTION BIOPROCEDES

<table>
<thead>
<tr>
<th>GCGP-Bio-Procédés</th>
<th>TRANSFERT DE MATIERE – OPERATIONS UNITAIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
<td>n° du module : 311</td>
</tr>
<tr>
<td>UE 31</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Modules 111 ; 113 ; 213 ; 215 ; 225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
</tbody>
</table>

EQUILIBRES ENTRE PHASES
- Corps purs, variance, règles de phases.
- Equilibrés liquide-liquide.
- Equilibrés liquide-solide.
- Equilibrés liquide-vapeur.

ECHANGES DE MATIERE – OPERATIONS UNITAIRES
- Étage théorique, étage réel.
- Cascade d'étages théoriques ; nombre d'étages théoriques, méthode de calcul graphique et numérique ; bilans de matière et de chaleur.
- Extractions liquide – liquide, solide – liquide.
- Cristallisation industrielle.

DISTILLATION
- Distillation continue d'un mélange binaire : Méthode de McCabe et Thiele et de Ponchon Savart.
- Distillation discontinue.
- Distillations des azéotropes et d'un mélange multi-composants.

TECHNOLOGIE DU TRANSFERT DE MATIERE
- Cristalliseurs.
- Extracteurs liquide-liquide et solide-liquide.
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>111 ; 113 ; 211 ; 213 ; 215 ; 217</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>30</td>
</tr>
<tr>
<td>CM</td>
<td>12</td>
</tr>
<tr>
<td>TD</td>
<td>18</td>
</tr>
<tr>
<td>TP</td>
<td></td>
</tr>
<tr>
<td>Coeff</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

OPERATIONS UNITAIRES
- Absorption, désorption.
- Adsorption (cycle, régénération).
- Séparation par membranes.
- Coagulation, flocculation.
- Evaporation.
- Diagramme de l'air humide, humidification, séchage.

APPLICATIONS A L'ENVIRONNEMENT
- Traitements des effluents gazeux et liquides et des déchets.

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Travaux Pratiques

TRANSFERT DE MATIERE - OPERATIONS UNITAIRES

n° du module : 313

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 111 ; 113 ; 213 ; 215 ; 225 ; 311</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td></td>
<td>48</td>
<td></td>
<td>2.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES
- Distillations continue et discontinue.
- Extrait liquide – liquide et solide-liquide.
- Séchage et humidification.
- Cristallisation.

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
</table>

Travaux pratiques

TECHNIQUES SEPARATIVES et ENVIRONNEMENT

n° du module : 314

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 111 ; 113 ; 211 ; 213 ; 215 ; 222 ; 311 ; 312</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
<td></td>
<td>24</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES
- Absorption.
- Adsorption.
- Séchage.
- Coagulation, floculation.
- Séparations membranaires.
- Hydrodynamique des colonnes.

| Niveau requis |

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

55
<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECOUTER comprenant les points essentiels sur des sujets familiers : présentation d'une expérience, consignes à caractère technique et scientifique, mode opératoire. Comprendre l'essentiel d'émissions de radio ou télévision sur l'actualité.</td>
<td>Informer</td>
</tr>
<tr>
<td>LIRE comprenant des textes relatifs au travail : notice d'appareil, document technique ; comprendre la description d'événements, l'expression de sentiments (lettres).</td>
<td>Communiquer</td>
</tr>
<tr>
<td>PRENDRE PART A UNE CONVERSATION conversant sans préparation sur des sujets familiers ; faire face à la majorité des situations que l'on peut rencontrer au cours d'un voyage.</td>
<td>Maîtriser</td>
</tr>
<tr>
<td>S'EXPRIMER ORALEMENT EN CONTINU raconter des expériences, des événements.</td>
<td></td>
</tr>
<tr>
<td>ECRIRE écrire des textes sur des sujets familiers : rédaction d'un CV, d'une lettre de motivation, d'une demande de stage ou de documentation.</td>
<td></td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Modules 122 ; 123 ; 124 ; 223 ; 224</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>20</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formalisation d'un bilan personnel.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Préparation à l'entretien d'embauche.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rédaction du rapport PPP.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conduite de réunion.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPRESSON ET COMMUNICATION</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyse d'une expérience (technique ou humaine), d'une situation, d'un texte ; recherche documentaire.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Rédaction de comptes-rendus, de rapports, résumés, circulaires, lettres, notes de service, bons de commandes...</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Présentation orale d'une personne, d'une situation, d'un problème, directe ou téléphonique.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Présentation orale et écrite de résultats d'expérimentation.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Techniques de recherche d'emplois.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
GCGP-Bio-Procédés

<table>
<thead>
<tr>
<th>S3</th>
<th>UE 32</th>
</tr>
</thead>
</table>

CHIMIE ANALYTIQUE

n° du module : 324

Pré-requis

<table>
<thead>
<tr>
<th>Modules 125 ; 225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>26</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>CHIMIE ANALYTIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>- Méthodes chromatographiques (CPG, CPL).</td>
</tr>
<tr>
<td>- Méthodes spectrophotométriques (UV-visible, IR).</td>
</tr>
<tr>
<td>- Méthodes électrochimiques (conductimétrie, potentiométrie,...).</td>
</tr>
<tr>
<td>- Méthodes électrophorétiques.</td>
</tr>
<tr>
<td>- Analyseurs en ligne.</td>
</tr>
</tbody>
</table>

GCGP-Bio-Procédés

<table>
<thead>
<tr>
<th>S3</th>
<th>UE 32</th>
</tr>
</thead>
</table>

Travaux pratiques

<table>
<thead>
<tr>
<th>CHIMIE ANALYTIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>- TRAVAIL PRATIQUE</td>
</tr>
<tr>
<td>- Analyses instrumentales.</td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Modules 125 ; 225 ; 324</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Pré-requis

<table>
<thead>
<tr>
<th>Modules 125 ; 225</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>CHIMIE ORGANIQUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description des différentes fonctions et principales réactions rencontrées en chimie organique.</td>
</tr>
<tr>
<td>Application à l'étude des principales familles de composés organiques :</td>
</tr>
<tr>
<td>- hydrocarbures.</td>
</tr>
<tr>
<td>- dérivés halogénés.</td>
</tr>
<tr>
<td>- alcools.</td>
</tr>
<tr>
<td>- composés carbonylés.</td>
</tr>
<tr>
<td>- amines.</td>
</tr>
<tr>
<td>- polymères.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Travaux pratiques

<table>
<thead>
<tr>
<th>GCGP-Bio-Procédés</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3</td>
</tr>
<tr>
<td>UE 32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Travaux pratiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIMIE ORGANIQUE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>n° du module : 327</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 125 ; 225 ; 324 ; 326</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>TRAVAUX PRATIQUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synthèses et analyses.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>42</td>
<td>20</td>
<td>22</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
</table>

LES BONNES PRATIQUES DE LA MICROBIOLOGIE :
- Équipement et instrumentation de laboratoires.
- La récolte et la conservation des prélèvements.
- Principe de numération, d'isolement et d'identification des micro-organismes.
- Bases de l'hygiène, de la sécurité et de la qualité microbiologique en milieu industriel.
- Utilisation des agents antimicrobiens.

LES BACTÉRIES
- La cellule bactérienne : morphologie, structure, composition chimique.
- Métabolisme.
- Nutritio et conditions physico-chimiques de la croissance.
- Reproduction et génétique bactérienne.
- Produits de sécrétions, toxigène, antibiotiques.
- Utilisation et moyens de lutte.

LEVURES ET MOISSURES
- Caractères généraux.
- Physiologie, métabolisme et conditions de croissance.
- Groupes d'intérêt industriel.
- Utilisation et moyens de lutte.

LES VIRUS
- Caractères généraux.
- Notions élémentaires sur la structure et les interactions virus - cellules animales.
- Les bactériophages – Structure, infection lytique, lysogénie.
- Détection et moyens de lutte.

LES CELLULES ANIMALES
- Propriétés (système eucaryote : glycosylation, méthylation…).
- Intérêts et perspectives (production d'hormones, anticorps, autres molécules...).
- Applications industrielles.

GÉNÉTIQUE MICROBIENNE : (NOTIONS DE BASE)
- L'information génétique.
- L'amélioration des souches : mutation, transformation, génie génétique.

NOTIONS DE MICROBIOLOGIE INDUSTRIELLE
- Conservation et propagation des souches.
- Milieux industriels de culture.
- Exemples de fermentation industrielle.
Modules 125 ; 225 ; 331

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>24</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRACTIQUES
- La manipulation microbiologique : travailler stérilement,
- Ensemencement, isolement, dénombrement.
- Examen microscopique des bactéries, des levures et moisissures à l'état fixe et par coloration.
- Analyse microbiologique de produits : charge microbienne, flores indicatrices.
- Mesure de biomasse par différentes techniques.
- Conditions physico-chimiques de croissance : température, pH.
- Inhibiteurs de croissance (exogènes ou sécrétion).
- Facteurs de croissance (vitamines, sels minéraux, azote, carbone,...).
- Culture mixte (synergie et compétition...).
- Contrôle de la qualité microbienne de l'air, de l'eau, du matériel.
- Techniques d'identification classiques et rapides.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>16</td>
<td>18</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Acides aminés : liaisons peptidiques, protéines,
- Glucides : structures et propriétés,
- Lipides : structures et propriétés,
- Acides nucléiques et biosynthèse protéiques,
- Aspect énergétique des réactions biochimiques (on pourra présenter en illustration le cycle de KREBS),
- Applications industrielles.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES

- Dosage des protéines : azote total, dosages colorimétriques.
- Analyse d'une protéine : méthode d'hydrolyse, analyse qualitative et quantitative des acides aminés.
- Méthodes de caractérisation et de dosage de quelques glucides.
- Méthodes d'extraction des lipides : analyse des acides gras et des glycérides.
- Exemple de détermination d'une activité enzymatique.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
6. SEMESTRE S4 OPTION BIOPROCÉDES

GCGP-Bio-Procédés

<table>
<thead>
<tr>
<th>S4</th>
<th>UE 41</th>
</tr>
</thead>
</table>

REACTEURS BIOLOGIQUES

n° du module : 411

<table>
<thead>
<tr>
<th>Pré-requis Modules 111 ; 113 ; 125 ; 213 ; 215 ; 225 ; 331 ; 333</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>56</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>Communiquer</td>
</tr>
<tr>
<td>Maîtriser</td>
</tr>
</tbody>
</table>

REACTEURS BIOLOGIQUES

- Cinétiques enzymatiques.
- Réacteurs enzymatiques (enzymes en suspension, enzymes fixés : ils fixés ou fluidisés).
- Cinétiques microbiennes.
- Fermenteurs agités : ouverts, fermés et à biomasse fixée.
- Réacteurs à cellules animales.
- Prise en compte des contraintes de sécurité.

TECHNOLOGIE DES REACTEURS BIOLOGIQUES

- Agitation ; notions de mélange, mise en suspension d'un solide, système gaz-liquide, liquide – liquide.
- Aération.
- Stérilisation.

GCGP-Bio-Procédés

<table>
<thead>
<tr>
<th>S4</th>
<th>UE 41</th>
</tr>
</thead>
</table>

Travaux Pratiques

<table>
<thead>
<tr>
<th>Reacteurs Biologiques</th>
</tr>
</thead>
<tbody>
<tr>
<td>n° du module : 412</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis Modules 111 ; 113 ; 125 ; 213 ; 215 ; 225 ; 331 ; 333 ; 411</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>24</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>Communiquer</td>
</tr>
<tr>
<td>Maîtriser</td>
</tr>
</tbody>
</table>

TRAVAUX PRATIQUES

- Cinétiques enzymatiques.
- Cinétiques microbiennes.
- Fermenteurs aérobies (agitation, mélange, transfert de matière).
- Réacteurs à biomasse fixée (lits bactériens, etc...).
GCGP-Bio-Procédures
GENIE DES BIOPROCEDES
n° du module : 413

Pré-requis
- Modules 111 ; 113 ; 125 ; 213 ; 215 ; 225 ; 311 ; 331 ; 333 ; 411

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>14</td>
<td>14</td>
<td></td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

BIOENERGETIQUE
- Fermentation mécanique.
- Pyrolyse et gazéification.
- Perspectives et développement.

INFLUENCE DU CONDITIONNEMENT SUR LA PRESERVATION ET LA CONSERVATION DE LA MATIÈRE BIOLOGIQUE
- Stabilisation par traitements thermiques : pasteurisation, appertisation, stérilisation.
- Stabilisation par le froid : réfrigération et congélation.
- Stabilisation par abaissement de l’activité de l’eau : lyophilisation.
- Autres procédés.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

GCGP-Bio-Procédures
Travaux pratiques
GENIE DES BIOPROCEDES
n° du module : 414

Pré-requis
- Modules 111 ; 113 ; 125 ; 213 ; 215 ; 225 ; 311 ; 331 ; 333 ; 411 ; 413

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

TRAVAUX PRATIQUES
- Lyophilisation.
- Stérilisation.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
GCGP-Bio-Procédés
S4
UE 42

PROJETS TUTORES
n° du module : 421

Pré-requis

<table>
<thead>
<tr>
<th></th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>300 heures</td>
<td></td>
</tr>
<tr>
<td>Projet tutoré théorique</td>
<td>4</td>
</tr>
<tr>
<td>Projet tutoré pratique</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td></td>
<td>Communiquer</td>
</tr>
<tr>
<td></td>
<td>Maîtriser</td>
</tr>
</tbody>
</table>

Ces projets ont pour but de développer l'autonomie de l'étudiant dans les domaines de la gestion de ses études et de l'acquisition des méthodes de travail et ceci individuellement ou collectivement. Ces projets tutorés doivent concourir à l'assimilation des connaissances du programme pédagogique et développer le sens de l'initiative et de l'autonomie.

Les projets pourront balayer l'ensemble des disciplines abordées durant les études et les sujets de la spécialité devront être privilégiés en S3 et S4.

Ces projets seront réalisés en liaison étroite avec les enseignants et devront permettre à l'étudiant de mettre en application ou d'approfondir l'ensemble des enseignements dispensés au cours des trois semestres précédents. L'ensemble du travail pourra nécessiter :
- une étude bibliographique,
- l'analyse de documents scientifiques et techniques,
- des calculs prévisionnels d'appareillage,
- la recherche du matériel et des matériaux dans des catalogues commerciaux,
- la réalisation de schémas de certains sous-ensembles,
- des essais expérimentaux,
- une évaluation économique sommaire.
<table>
<thead>
<tr>
<th>GCGP-Bio-Procédés</th>
<th>STAGE INDUSTRIEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>n° du module : 422</td>
</tr>
<tr>
<td>UE 42</td>
<td></td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 semaines minimum</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

Le stage industriel doit être, pour le futur diplômé, l'occasion de rassembler et d'appliquer ses connaissances à une étude ou la résolution d'un problème réel. Le suivi et l'encadrement d'un stage sont assurés par le département, notamment par des visites dans les entreprises d'accueil. Chaque stagiaire sera parrainé par un enseignant et un professionnel.

A l’issue de son stage, l’étudiant fournit obligatoirement un rapport dont il expose le contenu devant un jury constitué d’enseignants et si possible de représentants du milieu industriel.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
</table>
Modules Complémentaires: catégorie A (ouverture scientifique)

<table>
<thead>
<tr>
<th>GCGP-Procédés-Bio-Procédés</th>
<th>MATHEMATIQUES APPLIQUEES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module complémentaire Ouverture Scientifique</td>
<td>Module A1</td>
</tr>
</tbody>
</table>

Pré-requis

<table>
<thead>
<tr>
<th>Modules 129 ; 229</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>40</td>
<td>14</td>
<td>18</td>
<td>8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

ANALYSE NUMERIQUE
- Calcul d'intégrales.
- Résolution d'équations différentielles et algébriques.

ELEMENTS DE CALCUL DES PROBABILITES ET DE STATISTIQUES
- Problèmes de dénombrement, algèbre combinatoire.
- Notions de probabilité, variables aléatoires, fonctions de répartition.
- Séries statistiques, représentations graphiques, valeurs caractéristiques.
- Lois : normale, log. normale, de Poisson, binomiales, empiriques.
- Exemples simples d'application, échantillonnage, ajustement à une distribution théorique.
- Notions sur les plans d'expériences.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2000
<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALYSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Intégrales indéfinies, critère de convergence.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>- Exemple de résolution d'équations différentielles du second</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ordre non linéaire.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Equations différentielles aux dérivées partielles</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>(exemple de l'équation de chaleur).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Notions sur les opérateurs : gradient, rotationnel, laplacien.</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ALGEBRE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Diagonalisation de matrice, vecteurs propres, valeurs</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>propres.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Application à la résolution de système d'équations</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>différentielles.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEMENTS DE CALCUL DES PROBABILITES ET DE STATISTIQUES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Problèmes de dénombrement, algèbre combinatoire.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Notions de probabilité, variables aléatoires, fonctions de</td>
<td></td>
<td></td>
</tr>
<tr>
<td>répartition.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Série statistique, représentations graphiques, valeurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>caractéristiques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Lois : normale, log normale, de Poisson, binomiales,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>empiriques.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Exemples simples d'application, échantillonnage,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ajustement à une distribution théorique.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Notions sur les plans d'expériences.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GCGP-Procédés-Bio-Procédés</td>
<td>CHIMIE</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Module complémentaire</td>
<td>Module A3</td>
<td></td>
</tr>
<tr>
<td>Ouverture Scientifique</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 125 ; 225 ; 326</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>30</td>
<td>16</td>
<td>8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Approfondissement dans les domaines de la chimie organique, minérale et/ou analytique....</td>
<td>Informer</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009

69
Programmation

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 111 ; 113 ; 122 ; 129 ; 213 ; 215 ; 229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>CM (6)</td>
</tr>
<tr>
<td></td>
<td>TD (16)</td>
</tr>
<tr>
<td></td>
<td>TP (8)</td>
</tr>
<tr>
<td></td>
<td>Coeff (1.5)</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire
- Formation aux langages informatiques utilisés en génie des procédés

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Modules</td>
<td>111 ; 113 ; 125 ; 129 ; 213 ; 215 ; 225 ; 229 ; 331</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Coeff</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Étude de réacteurs en milieu hétérogène.
- Notion de réacteur réel.
- Distribution des temps de séjour.

Niveau requis

<table>
<thead>
<tr>
<th></th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

<table>
<thead>
<tr>
<th>Transfert de matière</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>cinétique de transfert, diffusion moléculaire et turbulente</td>
<td>Informer</td>
</tr>
<tr>
<td>coefficients de transfert</td>
<td></td>
</tr>
<tr>
<td>transfert de matière entre deux phases en mouvement</td>
<td></td>
</tr>
<tr>
<td>Unité de transfert d’un échangeur de matière : hauteur</td>
<td></td>
</tr>
<tr>
<td>et nombre d’unités de transfert</td>
<td></td>
</tr>
<tr>
<td>Transfert de chaleur</td>
<td></td>
</tr>
<tr>
<td>calcul d’un échangeur de chaleur,</td>
<td></td>
</tr>
<tr>
<td>nombre d’unités de transfert, efficacité d’un échangeur</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cinétique</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Coefficients</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Transfert de matière</td>
<td>Informer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcul d’échangeur de chaleur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nombre d’unités de transfert et efficacité d’échangeur</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td>Modules 111 ; 113 ; 211 ; 213 ; 215 ; 311 ; 312 ; 331 ; 333 ; 335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>30 CM 6 TD 16 TP 8 Coeff 1,5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Atelier flexible.
- Etude du fonctionnement en discontinu d’un atelier :
 - Réacteur agité.
 - Distillation discontinue.
 - Bilans matière et thermique.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>125 ; 225 ; 333 ; 334</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Modifications biochimiques des constituants lors des traitements industriels.
- Propriétés technofonctionnelles des glucides, lipides et protides
- Etudes de quelques filières industrielles.

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>125, 225, 331, 332</td>
<td>30</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- HACCP : principe et méthodologie
- Normes microbiologiques
- L'échantillonnage dans les contrôles microbiologiques
- Techniques rapides d'analyses microbiologiques

TRAVAUX PRATIQUES

- Analyse microbiologique complète d'un ou plusieurs produits selon les normes en vigueur

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Pré-requis

| Modules 111 ; 113 ; 211 ; 212 ; 213 ; 215 ; 225. |
|-----------------|----------------|----------------|----------------|----------------|
| **Total** | **CM** | **TD** | **TP** | **Coeff** |
| 30 | 6 | 16 | 8 | 1.5 |

Description compétences/savoir-faire

TECHNIQUES MEMBRANAIRES
- Dialyse,
- Ultrafiltration,
- Osmose inverse,
- Pervaporation.

AUTRES TECHNIQUES
- Centrifugation,
- Essorage,
- Echanges d’ions.

TRAVAUX PRATIQUES
- Procédés de séparation par membranes.

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
8. Modules Complémentaires: catégorie B (renforcement des compétences professionnelles)

<table>
<thead>
<tr>
<th>GCGP-Procédés-Bio-Procédés</th>
<th>ANGLAIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module complémentaire</td>
<td>Niveau B2 (portfolio européen)</td>
</tr>
<tr>
<td>Renforcement des</td>
<td>Module B1</td>
</tr>
<tr>
<td>Compétences</td>
<td></td>
</tr>
<tr>
<td>Professionnelles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 121 : 221 : 321</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>ECOUTER</td>
<td></td>
</tr>
<tr>
<td>comprendre des conférences, suivre une argumentation, des émissions de télévision, des films en langue standard.</td>
<td></td>
</tr>
<tr>
<td>LIRE</td>
<td></td>
</tr>
<tr>
<td>comprendre des articles, des rapports généraux ou scientifiques, un texte littéraire contemporain en prose.</td>
<td></td>
</tr>
<tr>
<td>PRENDRE PART A UNE CONVERSATION</td>
<td></td>
</tr>
<tr>
<td>communiquer spontanément et aisance avec un locuteur natif, présenter et défendre mes opinions.</td>
<td></td>
</tr>
<tr>
<td>S'EXPRIMER ORALEMENT EN CONTINU</td>
<td>X</td>
</tr>
<tr>
<td>s'exprimer de façon claire et détaillée sur divers sujets, présenter son stage en entreprise.</td>
<td></td>
</tr>
<tr>
<td>ECRIRE</td>
<td>X</td>
</tr>
<tr>
<td>pouvoir écrire des textes clairs et détaillés sur divers sujets généraux ou scientifiques : faire une présentation d'une réaction ou d'un procédé ou d'un appareil, résumer ou reformuler un document, traduire un document de spécialité à partir du français ou de l'anglais, rédiger un abstract ou un compte-rendu scientifique, rédiger un mode opératoire, décrire un procédé.</td>
<td></td>
</tr>
<tr>
<td>GCGP-Procédés-Bio-Procédés</td>
<td>CONNAISSANCE DE L’ENTREPRISE</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Module complémentaire</td>
<td>Module B2</td>
</tr>
<tr>
<td>Renforcement des</td>
<td></td>
</tr>
<tr>
<td>Compétences</td>
<td></td>
</tr>
<tr>
<td>Professionnelles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Bac scientifique ou équivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEGISLATION DU TRAVAIL ET RELATIONS HUMAINES DANS L’ENTREPRISE</td>
<td>informer</td>
</tr>
<tr>
<td>- Organisations professionnelles et syndicales.</td>
<td>Communiquer</td>
</tr>
<tr>
<td>- Contrats de travail, conventions collectives.</td>
<td>Maîtriser</td>
</tr>
<tr>
<td>- Représentation du personnel.</td>
<td></td>
</tr>
<tr>
<td>- Salaires, horaires, congés, sécurité sociale.</td>
<td></td>
</tr>
<tr>
<td>- Accidents du travail, sécurité.</td>
<td></td>
</tr>
</tbody>
</table>
Pré-requis

<table>
<thead>
<tr>
<th>Bac scientifique ou équivalent</th>
<th>Total</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Description compétences/savoir faire

<table>
<thead>
<tr>
<th>Description compétences/savoir faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normes</td>
<td>Informer</td>
</tr>
<tr>
<td>Gestion de Projets</td>
<td></td>
</tr>
<tr>
<td>Connaissance et utilisation des outils du Management</td>
<td></td>
</tr>
<tr>
<td>Notions du management de la qualité, environnemental</td>
<td></td>
</tr>
<tr>
<td>GCGP-Procédés-Bio-Procédés</td>
<td>ETUDE TECHNICO-ECONOMIQUE D'UN PROJET</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Module complémentaire</td>
<td>Module B4</td>
</tr>
<tr>
<td>Renforcement des</td>
<td></td>
</tr>
<tr>
<td>Compétences</td>
<td></td>
</tr>
<tr>
<td>Professionnelles</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bac scientifique ou équivalent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Etude technique et économique d'un projet.</td>
<td>X</td>
</tr>
<tr>
<td>- Gestion technique et financière d'une unité.</td>
<td>X</td>
</tr>
<tr>
<td>- Gestion des coûts de fonctionnement et d'investissement d'un atelier de production.</td>
<td>X</td>
</tr>
</tbody>
</table>
GCGP-Procédés-Bio-Procédés

Module complémentaire Renforcement des Compétences Professionnelles

DEUXIEME LANGUE (allemand, espagnol, italien, ...)

Module B5

<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>ÉCOUTER</td>
<td>informer</td>
</tr>
<tr>
<td>comprendre des mots familiers et des expressions très courantes si les gens parlent lentement et distinctement.</td>
<td>X</td>
</tr>
<tr>
<td>LIRE</td>
<td></td>
</tr>
<tr>
<td>comprendre des textes simples.</td>
<td></td>
</tr>
<tr>
<td>PRENDRE PART A UNE CONVERSATION</td>
<td></td>
</tr>
<tr>
<td>communiquer de façon simple avec un interlocuteur, poser des questions simples sur des sujets familiers et répondre à de telles questions.</td>
<td></td>
</tr>
<tr>
<td>S'EXPRIMER ORALEMENT EN CONTINU</td>
<td></td>
</tr>
<tr>
<td>pouvoir utiliser des expressions simples pour décrire une situation.</td>
<td></td>
</tr>
<tr>
<td>ÉCRIRE</td>
<td></td>
</tr>
<tr>
<td>savoir écrire un texte court : carte postale, réponse à un questionnaire, ...</td>
<td></td>
</tr>
</tbody>
</table>
9. Modules Complémentaires: catégorie C (approfondissement technologique)

<table>
<thead>
<tr>
<th>GCGP-Procédés</th>
<th>GRANDS PROCEDES DE CHIMIE INDUSTRIELLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module complémentaire</td>
<td>Module C1</td>
</tr>
<tr>
<td>Approfondissement Technologique</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 125 ; 225 ; 324 ; 326</th>
</tr>
</thead>
</table>
| Total | CM
| | TD
| | TP
| | Coeff |
| 30 | 6
| | 16
| | 8
| | 1,5 |

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Informer</td>
</tr>
<tr>
<td>CHIMIE ORGANIQUE</td>
<td></td>
</tr>
<tr>
<td>• Solvants.</td>
<td></td>
</tr>
<tr>
<td>• Intermédiaires de synthèse.</td>
<td></td>
</tr>
<tr>
<td>• Principes actifs.</td>
<td></td>
</tr>
<tr>
<td>• Polymères.</td>
<td></td>
</tr>
<tr>
<td>• ...</td>
<td></td>
</tr>
<tr>
<td>CHIMIE MINERALE</td>
<td>X</td>
</tr>
<tr>
<td>• Engrais.</td>
<td></td>
</tr>
<tr>
<td>• Chlorure et soude.</td>
<td></td>
</tr>
<tr>
<td>• Semi-conducteurs.</td>
<td></td>
</tr>
<tr>
<td>• Liants hydrauliques.</td>
<td></td>
</tr>
<tr>
<td>• Verres, céramiques.</td>
<td></td>
</tr>
<tr>
<td>• Gaz industriels.</td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Modules 111 ; 113 ; 211 ; 213 ; 215 ; 217</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRAITEMENT DES EAUX :</td>
<td></td>
</tr>
<tr>
<td>- Caractéristique des eaux naturelles et industrielles,</td>
<td></td>
</tr>
<tr>
<td>- Procédés de clarification primaire, coagulation-décantation, épuration chimique, déminéralisation,</td>
<td></td>
</tr>
<tr>
<td>- Eaux de réfrigération et eaux d'appoint aux générateurs de vapeur.</td>
<td></td>
</tr>
<tr>
<td>TRAITEMENT DES EFFLUENTS GAZEUX :</td>
<td></td>
</tr>
<tr>
<td>- Pollution atmosphérique ; chimie de l'atmosphère,</td>
<td></td>
</tr>
<tr>
<td>- Maîtrise d'ambiance.</td>
<td></td>
</tr>
<tr>
<td>- Procédés de traitement.</td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 211 ; 222 ; 312</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Concepts et enjeux, système de management de la qualité.</td>
<td></td>
</tr>
<tr>
<td>- Normes qualité.</td>
<td></td>
</tr>
<tr>
<td>- Connaissances de différentes filières de traitement.</td>
<td></td>
</tr>
<tr>
<td>- Normes de rejet.</td>
<td></td>
</tr>
<tr>
<td>- Approfondissement sur les procédés de traitement des effluents liquides gazeux et des déchets.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Aspects santé et hygiène : code du travail ; ergonomie.
- Réglementation et autorisation du travail.
- Gestion des entreprises extérieures DT 78.
- Maîtrise des risques.

<table>
<thead>
<tr>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Informer</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>X</td>
</tr>
<tr>
<td>Pré-requis</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>Modules 111 ; 113 ; 127 ; 129 ; 227 ; 229 ; 333</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

AUTOMATIQUE DES SYSTEMES CONTINUS

- Principes de la régulation automatique.
- Les systèmes à régler : 1er ordre, 2ème ordre, avec retard.
- Comportement statique et dynamique, principes d'identification.
- Boucles complexes de régulation : cascade, régulation de rapport, régulation par anticipation.
- Systèmes Numériques Contrôle Commande.

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
Pré-requis

<table>
<thead>
<tr>
<th>Modules</th>
<th>111 ; 113 ; 127 ; 129 ; 213 ; 227 ; 229</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>30</td>
</tr>
<tr>
<td>CM</td>
<td>6</td>
</tr>
<tr>
<td>TD</td>
<td>16</td>
</tr>
<tr>
<td>TP</td>
<td>8</td>
</tr>
<tr>
<td>Coeff</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

CONDUITE DE PROCEDES

Automatique des systèmes discrets :
- Notions d’algèbre logique.
- Fonctions logiques – Logigrammes.
- Analyse des automatismes séquentiels par le GRAFCET (électriques ou électropneumatiques).
- Logique programmée, automate programmable, application au pilotage de procédés.

Automatique des systèmes continus :
- Principes de la régulation automatique
- Grandeurs à régler, grandeurs de réglage, perturbations.
- Les appareils de régulation : capteurs, transmetteurs, convertisseurs, régulateurs, actionneurs.
- Performances d’un système bouclé, précision, rapidité, stabilité.
- Réglage des actions P.I.D. d’un régulateur.
- Notions sur l’application au contrôle des procédés.

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>CM</th>
<th>TD</th>
<th>TP</th>
<th>Coeff</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>6</td>
<td>16</td>
<td>8</td>
<td>1,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opérations unitaires du traitement du solide.</td>
<td>Informer</td>
</tr>
<tr>
<td>Transports des solides.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DIMENSIONNEMENT D'OPERATIONS UNITAIRES

Module C6

<table>
<thead>
<tr>
<th>Pré-requis</th>
<th>Modules 111 ; 113 ; 211 ; 213 ; 215 ; 217 ; 311 ; 312</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
</tr>
</tbody>
</table>

Description compétences/savoir faire

<table>
<thead>
<tr>
<th>Niveau requis</th>
<th>informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
</table>

DIMENSIONNEMENT DES COLONNES INDUSTRIELLES
- Etude hydrodynamique appliquée au dimensionnement des colonnes de distillation, l'absorption et d'extraction liquide-liquide.
- Méthodes numériques pour le dimensionnement des colonnes à garnissage et des colonnes à plateaux : application à l'absorption adiabatique

DIMENSIONNEMENT DES SECHOIRS INDUSTRIELS
- Séchoirs à bande sans fin
- Séchoirs à lit fluidisé

ADSORPTION ET SEPARATION SUR MEMBRANES
- Colonnes d'adsorption : analyse frontale
- Modules de diffusion et de perméation.

© Ministère de l'enseignement supérieur et de la recherche
PPN Génie Chimique – Génie des Procédés publié par arrêté du 23 juillet 2009
<table>
<thead>
<tr>
<th>Pré-requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modules 113 ; 122 ; 129 ; 213 ; 229 ; 311 ; 312</td>
</tr>
<tr>
<td>Total</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Calcul des propriétés thermodynamiques et d'équilibres de phase par un logiciel.</td>
<td>Informer</td>
</tr>
<tr>
<td>• Simulation numérique des procédés industriels : utilisation de logiciels de conception.</td>
<td></td>
</tr>
<tr>
<td>GCGP-Procédés-Bio-Procédés</td>
<td>INDUSTRIALISATION DES PROCEDES</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Module complémentaire</td>
<td>Module C8</td>
</tr>
<tr>
<td>Approfondissement</td>
<td></td>
</tr>
<tr>
<td>Technologique</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-requis</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>CM</td>
</tr>
<tr>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description compétences/savoir-faire

- Conception d'un procédé (ou unité) à l'échelle pilote ou industrielle à partir d'études de laboratoire.
- Choix des techniques de mise en œuvre
- Paramètres d'extrapolation et dimensionnement
- Développement de la schématique et de l'instrumentation du procédé
- Prise en compte des aspects qualité, sécurité et environnement
- Approche économique

Niveau requis

<table>
<thead>
<tr>
<th>Informer</th>
<th>Communiquer</th>
<th>Maîtriser</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
GCGP-Procédés-Bio-Procédés
Module complémentaire
Approfondissement
Technologique

TECHNOLOGIE DES COLONNES
Module C9

| Modules 111 ; 113 ; 115 ; 211 ; 213 ; 215 ; 217 |
|-----------------|-------|-------|-------|-------|
| Total | CM | TD | TP | Coeff |
| 30 | 6 | 16 | 8 | 1.5 |

<table>
<thead>
<tr>
<th>Description compétences/savoir-faire</th>
<th>Niveau requis</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLONNES INDUSTRIELLES</td>
<td>Informer</td>
</tr>
<tr>
<td>• Conception et dimensionnement des colonnes, hydrodynamique des colonnes.</td>
<td></td>
</tr>
<tr>
<td>TECHNOLOGIE DES COLONNES INDUSTRIELLES</td>
<td>Communiquer</td>
</tr>
<tr>
<td>• Colonnes à garnissage, divers types de garnissage, nature, propriétés, choix.</td>
<td></td>
</tr>
<tr>
<td>• Colonnes à plateaux, à cloches, à soupapes, à grilles perforées.</td>
<td>X</td>
</tr>
<tr>
<td>• Comparaison des colonnes à plateaux et des colonnes à garnissages, critères de choix, implantation.</td>
<td></td>
</tr>
<tr>
<td>• Choix du matériel.</td>
<td></td>
</tr>
</tbody>
</table>